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Report on exploiting CCI products in MIP experiments 

 

1. Purpose and scope of this report 

This document is the second report on the outputs of the CMUG Model Inter Comparison (MIP) 
type experiments using data products from the CCI+ ECV projects. Its purpose is to provide 
feedback to ESA and the CCI teams on the suitability and application of CCI climate data 
products in climate models. This activity has eleven experiments (CMUG WPs 4.1 to 4.11) by 
four CMUG partners. These are all focused studies which use CMIP6 model output for the 
research (as opposed to conducting new model runs). Many data products from the CCI ECVs 
are included, and outputs from five of the new CCI+ ECVs are used (or will be when available). 
An overview of the key features of the experiments is given in Table 1. 

 

2. CMUG approach for assessing quality in CCI products 

This work is concerned with exploiting CCI products in MIP experiments, with the activity in 
CMUG WPs 4.1 to 4.6 on statistical analyses that evaluate facets of model behaviour in 
representing climate. They carefully target individual elements of uncertainty derived either 
from the climate system (e.g.,, internal variability, system memory) or the observations (e.g.,, 
levels of processing or scales of averaging) and then provide a framework for combining these. 
There is an emphasis on characterising and understanding uncertainty in these experiments to 
inform the CMUG work on the ESMValTool to include uncertainty in its evaluation process 
for the metrics of the ECVs in these experiments. CMUG WP 4.7 addresses the important issue 
relevant to the component of CMIP6 focusing on decadal prediction by applying multiple 
CCI/CCI+ atmospheric and marine ECVs to generate an assessment of the skill in decadal 
forecasting systems. CMUG WPs 4.8 to 4.10 focus on the application of CCI/CCI+ terrestrial 
ECVs to evaluate the physical basis of representation of biophysical land surface processes and 
assess their simulation in earth system model components. They use data from the CMIP6 
archive to understand plant climate interactions, their representation in climate models and 
evaluate model performance and suggest areas for future model development. WP 4.11 will 
build on the process analysis undertaken elsewhere in CMUG and will apply several ECVs and 
other datasets to identify the drivers of biases in the state of the terrestrial surface and the fluxes 
generated by its interaction with the atmosphere. This will provide an assessment of the value 
of combining multiple ECVs with other data sources to assess the quality and identify areas for 
improvement in the atmospheric model component of CMIP.  

The uncertainty characterisation accompanying the CCI ECV datasets is examined to 
understand its usefulness in the modelling studies. The different types of uncertainty 
characterisation (grid point, bias, statistical, variance, temporal/spatial, or other) provided by 
the CCI ECV teams and how it meets user requirements is commented on in this report.
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CMUG WP EXPLOITING CCI PRODUCTS IN MIP 
EXPERIMENTS 

CMUG 
LEAD 

EXPERIMENT 
TYPE 

CCI ECVS  OTHER ECVS 

4.1 Evaluation of modelled system memory MPI-M Statistical analysis Salinity, Snow, LST, SST, SI  

4.2 Evaluation of model results considering 
observational uncertainty 

MPI-M Statistical analysis Salinity, Snow, LST, SST, SI  

4.3 Evaluation of model results considering the 
abstraction level of observational products 

MPI-M Statistical analysis Salinity, Snow, LST, SST, SI  

4.4 Optimal spatial and temporal scales for model 
evaluation 

MPI-M Statistical analysis Salinity, Snow, LST, SST, SI  

4.5 Evaluation of model results considering 
internal variability 

MPI-M Statistical analysis Salinity, Snow, LST, SST, SI  

4.6 Evaluation of model results considering a 
combination of sources of uncertainties 

MPI-M Statistical analysis Salinity, Snow, LST, SST, SI  

4.7 Skill assessment of the DCPP decadal 
predictions 

BSC Skill analysis Sea Level, SST, Clouds  

4.8 Use LST products to develop and test simple 
models relating the LST versus air 
temperature (near surface) difference to 
vegetation moisture stress 

Met 
Office 

MIP process 
analysis 

AGBiomass, LST, SM, LC Temperature, Precipitation, 
FAPAR, LAI 

4.9 Use CCI+ products and simple models 
developed in WP4.8 to evaluate performance 
of LST versus air temp, using multiple land 
surface and ES models 

Met 
Office 

MIP process 
analysis 

LST, AGBiomass, LC/HRLC Temperature 

4.10 Comparison of CCI data in vegetation study 
with other satellite data and LS models 

Met 
Office 

MIP process 
analysis 

AGBiomass, LST, SM, LC Temperature, Precipitation, 
FAPAR, LAI 

4.11 Land-surface interaction related biases in 
AMIP 

IPSL MIP process 
analysis 

LST , Snow, SM Air temp, turb. fluxes (Jung, 
Gleam,) meteo analysis, 
MODIS data, CERES rad. 
fluxes, SM (SMOS, Gleam) 

 Table 1: Main features of the work on exploiting CCI products in MIP experiments. 
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3. Links between Task 4 and the CMIP projects 

The results are relevant to the CMIP6 endorsed MIP projects that are working in a similar 
research area to CMUG WP4. CMIP is part of WCRP (World Climate Research Programme) 
which has proposed areas for emphasis in climate research called the ‘grand challenges’1, which 
the MIPs are helping to address. There are currently 23 CMIP6 endorsed MIP projects2 (plus 
17 related or supporting MIP type projects) which cover a wide range of Earth system processes 
and modelling activities. The CMUG partners working on this Task are engaging with relevant 
CMIP projects and exchanging results and information about their respective research. There 
are CMUG partners are currently involved in all CMIP projects as summarized in Table 2.  
 
CMUG PARTNER MIP PROJECTS 
Met Office All MIP projects, either directly or through collaborative research with the UK institutes 

using the Met Office climate model 
The Met Office leads HighResMIP. 
A Met Office researcher is a panel member for CMIP6 

DLR Veronika Eyring is a panel member for CMIP6 
MIPs relevant to atmospheric processes and chemistry 

IPSL LS3MIP (Land Surface, Snow and Soil Moisture Model Intercomparison Project) - the 
results will be valuable for the work proposed in CMUG. 
SPMIP for Soil Parameter MIP - the results will be particularly valuable for the work 
proposed in CMUG. 
AMIP  
HiResMIP (an AMIP at higher resolution) 

BSC ScenarioMIP (5x SSP2-4.5 scenario runs) 
DCPP 
VolMIP  (volcpinatubo-full and volc-long-eq) 
HiResMIP  PRIMAVERA: spinup, hist-1950, control-1950 and highres-future) 
AerChemMIP  (piClim-2xdust) 
C4MIP 
OMIP 
DECK 

MPI-M Dirk Notz is co-chair of SIMIP 
Researchers at MPI-M are involved in virtually all MIPs and will provide respective model 
output from specific simulations. 

Météo France AERCHEMMIP 
CFMIP 
DAMIP 
DCPP 
FAFMIP 
LS3MIP 
RFMIP 
ScenarioMIP 
CORDEX 
Plus an involvement with many others 

SMHI CMIP 
HighRESMIP 

Table 2: Summary of CMUG involvement with CMIP projects. 

                                                
1  https://www.wcrp-climate.org/grand-challenges/grand-challenges-overview 
2  https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/modelling-wgcm-cmip6-endorsed-mips 
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4. CMUG MIP experiments with CCI products 

4.1 Evaluation of modelled system memory 

Lead partner: MPI-M 

Author: Andreas Wernecke 

Aim 

The aim of this research is to develop and apply a framework that allows evaluation of the 
simulated memory (temporal correlation) of ECVs in a model-evaluation processing chain. It 
will address the following scientific question: How can we evaluate the memory of climate 
variables as simulated by large-scale model simulations? 

Summary of Work and Results 

Work on this experiment has so far focused on the Sea Surface Salinity ECV (SSS) but the 
general workflow is adjustable to other ECVs. The temporal autocorrelation, or memory, is an 
essential property of all ECVs. It describes the ability of the earth system to maintain a quantity 
despite climate variability. The memory is also closely related to the predictability of a variable 
and the timeframe for which data assimilation into prediction models has the potential to be 
beneficial. However, here we do not investigate the role of model memory in the context of 
(e.g., seasonal-) prediction models but for the evaluation of climate models in general. The 
memory of a system variable is the result of the sum of all relevant physical processes, acting 
on their respective time scales. A disagreement of modelled and real memory indicates either 
that the relevance of processes is falsely interpreted (including potentially neglecting a process 
completely) or that processes are misrepresented in the model so that the respective relevant 
time scales are wrong. Observational uncertainties can also distort the image of the real system 
memory where, for example, sensor white noise would reduce the observed memory. 

Three statistics are used here, which are quickly introduced in the following.  

The Anomaly Correlation Coefficient (ACC) is frequently used as fully localized measure of 
the correlation between a seasonal forecast (v) and observations (o). The ACC is the Pearson 
correlation coefficient for a given location and month of the year, calculated over a range of 
years. For the memory we treat the SSS of month x as forecast for a following month (x+lag). 
For example, the ACC can be a measure of how strongly a positive SSS anomaly in, say, 
January is informative for the SSS anomaly in March (lag=2 month), at any given location.  

The lagged pattern correlation on the other hand is defined as the Pearson correlation between 
two time slices, calculated across all locations. The pattern correlation between January and 
March can therefore have different values for each year, which we average using a Fisher-Z 
transformation. The pattern correlation is a global statistic describing regional memory; how 
long does a pattern (fingerprint) of regionally high/low anomalies persist? Limitations are the 
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disregard towards biases (of limited concern here since the seasonal cycle/trends are not the 
focus area) and amplitude of the pattern. For example, if there is a spatial pattern of high/low 
anomalies in January which diminish homogeneously (anomalies become smaller with time but 
maintain their relative spatial distribution) the pattern correlation would still attest full/perfect 
memory.  

Lagged Mean Squared Differences (MSD) (also called mean squared error) reflect a 
combination of change in amplitude and change in location. The MSD is easily converted into 
a skill score by S_MSD=1-MSD/MSD_REF, setting one to a perfect value (no differences) and 
zero to an MSD equal to a reference MSD. Typically reference values are based on an earlier 
MSD or a climatology (Section 8.3.3 in ‘Statistical Methods in the Atmospheric Sciences’; 
Wilks, 2019). Here we use the climatology as reference so that S_MSD=0 corresponds to a lag 
time where the initial SSS anomaly is just as good a predictor for a later time as the climatology 
(i.e. zero for anomalies). Note that for lag times larger than the temporal correlation length scale 
(memory), the climatology is the best a-priory predictor of the SSS state, meaning that negative 
S_MSD are to be expected.  

Here we investigate SSS memory in the CCI+ SSS product, ORAS5 reanalysis and the MPI-
ESM grand ensemble (MPI-GE). We use two periods for model-to-observation comparisons 
which are 1979-2005 (ORAS5 and MPI-GE historical runs) and 2010-2019 (CCI and MPI-GE 
RCP4.5 runs). In all cases we first derive the (linearly) detrended anomalies (the respective 
climatologies are based on the same periods as mentioned before) and bring the MPI-GE data 
onto the observational (EASE-2) projection. The MPI-GE sea surface salinity extends 
underneath sea ice, where the view for CCI satellite observations is blocked. We use only 
locations for which valid SSS observations are available throughout the whole data period and 
use the same mask for MPI-GE data. To minimize the influence of sea ice further we limit the 
study area to 65° S to 65° N.  

Figure 4.1.1 illustrates crucial steps towards the SSS memory analysis. The CCI+ SSS product 
and MPI-ESM data are brought to the same grid and masks (location of valid estimates) are 
synchronized (top row of Figure 4.1.1). SSS anomalies are derived year-round by subtracting 
the seasonal cycle and linear trends (examples for January and April 2019 shown in the second 
and third row of Figure 4.1.1). The anomalies (and with that the absolute SSS values) cannot 
be expected to agree between the data sets since they represent internal variability of the 
(modelled and observed) system. Again, the model runs used here are climate projections and 
are not intended to forecast the one realization of internal variability which the real world is 
taking but instead to represent plausible (alternative) realizations with realistic magnitude, 
spatial and temporal characteristics. The memory, represented by the ACC in the bottom row 
of Figure 4.1.1, is one of those characteristics which would ideally be consistent between the 
data sets. Overall, the ACC is considerably smaller in the CCI+ product than in the MPI-ESM 
and fewer locations have significant correlation. That being said, some regional similarities do 
exist, for example in the tropical pacific with bands of increased memory north and south of the 
equator as well as the north Atlantic between 10° N and 30° N and around Australia and 
Maritime Southeast Asia. 
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Figure 4.1.1: CCI+ satellite observations (left) and MPI-ESM grand ensemble member #1 
(right) January 2019 Sea Surface Salinity (SSS) (top) and SSS anomalies for January and April 
2019 (second and third row respectively) and Anomaly Correlation Coefficients (ACC, bottom 
row) between January and April SSS based on 2010 to 2019. Locations with ACC p-value below 
0.05 (failed significance test) are hatched.  

The local memory, as approached above by the ACC, can give valuable information of regional 
model to observation agreement. Relevant processes, leading to agreement or disagreement 
between the data sets, will however change throughout the year and act on a range of timescales, 
making a systematic investigation challenging (note that we show only the ACC between 
January and April as examples). The main global pattern appears to be that the observed 
memory is shorter than the MPI-ESM memory making local interpretations cumbersome. To 
test this hypothesis, we use the global anomaly pattern correlation.  
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Figure 4.1.2: Global SSS anomaly pattern correlation from MPI-ESM (right) and observations 
(left), namely the CCI+ SSS product (top) and ORAS5 ocean reanalysis (bottom). Note that the 
MPI-ESM data are confined to the same time periods as the respective observations and that 
we use historical forcing experiment before 2005 and RCP4.5 experiment past 2005. Dots 
indicate significance. 

We calculate the lagged pattern correlation between each month of the year (lead month) and 
each month of the full succeeding year (lag month). The lag period goes therefore from zero to 
eleven month (x-axis of Figure 4.1.2) where zero lag time corresponds to a perfect correlation 
of one. In general, the memory characteristics are discussed in terms of persistence (the initial 
short-term drop in correlation), long-term memory and potential reemergence of correlations 
throughout the year. However, the results shown in Figure 4.1.2 do not show noteworthy 
variations throughout the year or any features but a monotonic drop in pattern correlation. The 
typical time scale of these drops differs however by data set. The CCI+ product shows the 
shortest memory of only about three months; followed by ORAS5 reanalysis with about five 
months; the ten year MPI-ESM RCP4.5 sub-period of about six to seven months; and the longest 
memory of the 27 year MPI-ESM historical sub-period of more than 12 months (Figure 4.1.2). 

While noise in the satellite data could result in an underestimation of the system memory, we 
do not expect the ORAS5 reanalysis data to be particularly noisy. The consistently longer 
memory in model runs compared to both types of observations therefore suggests that the MPI-
ESM grand ensemble simulations have an unrealistically long modelled system memory. The 
temporal evolution of these model simulations is therefore apparently too smooth on short 
(seasonal to yearly) time-scales. As mentioned before, the MPI-ESM RCP4.5 memory for the 
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CCI+ period (2010-2019) is significantly shorter than for the historical simulations from 1979-
2005. This is fully consistent with shorter memory in the CCI+ data compared to ORAS5 data 
which is therefore no indication for a substantial influence of noise on the CCI+ data. 

The pattern correlation does not cover changes in the amplitude of the anomalies but just the 
relative spatial high/low anomaly distribution, which is why we complement the pattern 
correlation by an analysis of the MSD skill score.  

Figure 4.1.3: As Figure 4.1.2 but showing the Mean Squared Differences Skill Score (S_MSD) 
instead of the pattern correlation. 

The lagged MSD Skill Score (Figure 4.1.3) shows the same behaviour as the pattern correlation 
with the only difference that small values are reached after shorter periods which can be easily 
explained by the differences in the statistics. Both show a value of one for optimal agreement 
but while zero in the pattern correlation indicates no correlation between the two anomaly fields, 
an MSD Skill of zero only indicates that the MSD is as small as the climatology value. The 
order of length of memory by data set is the same for both statistics. 

Since the memory has no clear dependency on the time of the year, as can be seen in Figure 
4.1.3, we illustrate the decline of S_MSD as function of lag time and combine model and 
observational estimates in Figure 4.1.4. We further define an estimate for the memory as the 
first crossing of S_MSD with zero, i.e. the time for which the lead month can be considered 
useful, i.e. better than climatology, predictor for the lag month. Note that the absolute value of 
this definition of memory is strongly dependent on the statistic used (compare Figures 4.1.2 and 
4.1.3) but is nevertheless useful for model to observation comparisons. It can be seen that MPI-
ESM simulation can largely be separated from the observations for both data sets without 
consideration of seasons or any temporal averaging (Figure 4.1.4). 
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Figure 4.1.4: Decline of S_MSD with lag time for observations (black) and MPI-ESM (red) 
(left) where there is one line for each month of the time series, representing the decline in skill  
with the following month. The frequency distributions of the corresponding first crossing of 
S_MSD with zero using linear interpolation (‘memory’) is shown on the right. The CCI+ data 
and period are used for the top row and ORAS5 data and period for the bottom row.  

Lastly, we investigate the potential of a latitudinal dependency of the memory, inspired by the 
findings from the ACC above. For this reason, we derive the memory (as defined above) on 
latitudinal bands of 15° for each month of the year. Besides the now well-established difference 
in absolute memory we see good agreement in the latitudinal-temporal development. The 
memory is largest at around +/-30° N and towards 60° N with the shortest memory near the 
equator (Figure 4.1.5). Also, the temporal development shows many similarities with a 
prolongation of the memory in the first half of the year (January to June) around 30° N and in 
the second half of the year (July to December) at around 30° S. Small differences between 
observations and model are however noticeable; the tropical minimum in the MPI-ESM data 
lies between approximately 10° S (around June/July) to 10° N (December/January) while those 
points are about 5° to 10° further north and about two month earlier in both observational data 
sets. 
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Figure 4.1.5: The memory (defined here as the first zero crossing of the MSD Skill Score) by 
latitude (15° bands centreed at the latitudes shown) and lead month, averaged over the years 
and based on the data set, noted above each panel. 

Publications 

None so far, but we plan to describe related concrete plans in the next version of this report. 

Interactions with the ECVs used in this experiment 

Interactions between the CMUG and ECV projects for work on this WP in particular happened though 
an email exchange with the CCI+ SSS science lead where the influence of the sensor penetration depth 
on the characteristic depth of the surface water layer have been discussed. We concluded that under most 
circumstances (all but strong rain events) SSS satellite observations are representative for the surface 
mixed layer, which allows a one to one comparison with modelled SSS memory. The quarterly CSWG 
and the Integration meetings allowed for additional interactions, including with the SSS team. 

Consistency between data products 

So far we did not identify any inconsistencies of concern with regard to the system memory (in addition 
to those discussed above). There appears to be a bias in the global mean SSS between the model and 
observations of about 0.2 g/kg to 0.25 g/kg, which appears to be larger in the southern hemisphere than 
in the northern hemisphere. These biases towards MPI-ESM data are, however, consistent between 
reanalysis and CCI+ observations, suggesting that the model has a negative bias towards the real state. 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.2 Evaluation of model results considering observational 
uncertainty 

Lead partner: MPI-M 

Author: Andreas Wernecke 

Aim 

The aim of this research is to develop and apply a framework that allows one to include 
observational uncertainty information into a model-evaluation processing chain. It will address 
the following scientific question: How can we take observational uncertainty into account when 
evaluating large-scale model simulations? 

Summary of Work and Results 

So far, work in this area has focused on the sea ice ECV. When the sea ice ECV is used for 
model evaluation, this is in most cases done in terms of the Sea Ice Area (SIA), Sea Ice Extent 
(SIE) or Sea Ice Volume (SIV). Here we focus on the SIA due to known limitations of the SIE 
(such as resolution dependency) and it being used much more frequently than the SIV. The SIA 
is calculated as the Sea Ice Concentration (SIC) multiplied by corresponding pixel size, summed 
up over the whole hemisphere. Sometimes the difference in SIA from a few SIC products is 
used as a rough estimate of the SIA but with ongoing progress in SIC uncertainty quantification, 
an accompanying single product SIA uncertainty estimate seems overdue. The challenge is to 
convert local SIC uncertainty to a combined SIA uncertainty for which it is necessary to take 
into account the spatial covariance structure. The importance of the correlation structure for the 
SIA uncertainty, and with that for model evaluations, becomes clear when considering the two 
extremes: All SIC pixels could be considered statistically independent which would in practice 
result in SIA standard deviation of order 10 000 km². The other extreme is to consider all local 
uncertainties throughout the hemisphere as fully correlated which would increase the SIA 
uncertainty in practice to the order of 1 000 000 km² (based on 50 km resolution CCI+ SIC 
data).  

Work on this WP started with the theoretical development of a spatial covariance model which 
combines expected correlation signatures (based on our understanding of the error sources 
following discussions with the CCI+ SIC team; Thomas Lavergne, Met Norway). The main 
challenge is to quantify covariance model parameters (of our new model or in fact any 
covariance model). Most prominently this is the spatial de-correlation length scale, i.e. the 
characteristic spatial distance at which errors in the SIC product are largely independent. We 
address this challenge by three different approaches, as described below. 

 

 



CMUG CCI+ Deliverable  
Reference:  D4.1: Exploiting CCI products in MIP experiments 
Submission date:  14 October 2021 
Version:  2.1 

 
 

14 of 61 

The covariance model 

The algorithmic and smearing uncertainties (as provided by the CCI+ product) are assumed to 
be independent, each with their own correlation matrix. 

The algorithm uncertainty is expected to be largely driven by tie-point and methodological 
uncertainties and only to a smaller (here neglected) extent from local measurement 
uncertainties. Since small SIC values will be predominantly impacted by the ocean tie-point 
and high SIC values predominantly impacted by the 100% sea ice tie-point, we base the 
(hemisphere wide) algorithmic correlation solely on differences in the sea ice concentration, 
not on the physical distance between measurements. The following error correlation function 
(ca(xi ,xj ))  for the algorithmic uncertainty between measurements at locations xi and xj , 

fulfills these criteria: 

ca(xi ,xj )= exp[− δSIC
.2

lSIC
2 ]

 

where lSIC is a scaling parameter and
δSIC is the absolute difference in SIC (in percent) at the 

locations xi and xj .  

The smearing uncertainty represents a range of influences on the satellite measurements related 
to the different footprint sizes and spillover effects from outside of the theoretical footprints. Its 
correlation structure is hence more complex and should fulfill the following considerations: 

 The correlation should diminish with distance between locations 

 Uncertainties for similar SIC values are more likely to be subject to coherent errors than 
across SIC gradients 

 The land spillover effect near coasts is expected to cause correlated errors. 

The following error correlation function for the smearing uncertainty (cs(xi ,x j)) , between 

measurements at locations xi and xj , fulfills these criteria: 

𝑐௦൫𝑥, 𝑥൯ = 𝑒𝑥𝑝 ቈ
−𝛿௫

ଶ

(𝐼௫ + 𝐼௫ௌூ(1 − 𝛿ௌூ 100%⁄ ) + 𝐼௫𝑟)
ଶ
 

with l x0 , l xSIC and l xL being components of the characteristic correlation length scale, 
δx being 

the distance between xi and xj ,
δSIC as defined before and r L a factor representing the 

combined proximity to the land by: 

𝑟 =
𝐼
ଶ

𝛿,𝛿,
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where l L is a typical length scale for the impact of land on the correlation and
δL,i being the 

shortest distance to land (as defined by the SIC land mask) of xi (
δL, j is defined accordingly). 

To restrict the maximal impact of the land spillover on the correlation we set the maximum of
r L to one. Note that l xL and l L are separate parameters, the first representing the maximal 

additional correlation length scale in cs(xi ,x j) due to land influence (which can be understood 

as a distance the land influence is able to carry the uncertainty correlation) and the latter ( l L ) 
representing the typical distance away from the coast which is impacted. 

In summary, we defined correlation functions that match our basic expectations. It is not 
encompassing anti-correlations which is in line with our error characteristic expectations. The 
smearing error correlations diminish with distance between two measurements with the typical 

correlation length-scale (at which the correlation has fallen to about 0.37) between l x0 and
l x0+l xSIC+ l xL , depending on the sea ice concentration (longer with similar concentration 

values) and proximity to land (longer close to the coast). There are five free parameters 

(algorithmic and smearing uncertainty combined) which need to be set (l x0 ,l xSIC , l xL ,l L ,l SIC) . 
This is not to say that these are the only or best functional forms to represent the error correlation 
structure, it is one representation in line with our expectations. More research is needed to test 
these expectations, test other functional relationships and constrain the free parameters. The 
work described in the following is an early attempt to deepen our understanding in this regard. 

Investigation of the CCI+ SIC error correlation 

First, we derive spatial SIC correlations and SIC uncertainty correlations from repeated 
measurements. The rationale behind the use of the spatial SIC correlation as proxy for the SIC 
error correlation is that for a constant real SIC, the changes in SIC measurements would 
represent errors of repeated measurements. The SIC uncertainty correlation is related to the SIC 
error correlation by the idea that any process causing an increased uncertainty over a certain 
spatial footprint is more likely to cause the corresponding errors to be correlated as well. To be 
clear about the difference between errors and uncertainties: The uncertainty is a measure of the 
width of the distribution of a random variable (here the CCI SIC at a given time and location), 
the error is the SIC difference between a specific measurement (e.g., the SIC product value 
which is the centre of the uncertainty distribution) and the real value. If the uncertainty estimates 
are good, the error distribution will be consistent with the uncertainty estimates. For example, 
if two locations have highly correlated uncertainties it means that if one has relatively wide 
probability distribution, it is very likely that the other one has a relatively wide probability 
distribution as well. It does per se not mean that an e.g., overestimated SIC measurement at one 
location makes it more likely that the measurement at the other location is overestimated as 
well. 

For Figure 4.2.1 (right) we derive the SIC correlation structure from the CCI+ SIC 
measurements from February 21st, 2016 and use the provided uncertainties (algorithmic and 
smearing) from Feb. 21, 2016 to receive a combined covariance estimate. This is compared 
(Figure 4.2.1, left) with the covariance based on our correlation model with selected parameters 

(here: 
l x0= 100km,lxSIC300km,lxL= 100km,lL= 100km,lSIC= 20%

). The model has the 
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advantage that, once the parameters are derived, it is available for every time and place and 
adapts to changes in the ice cover dynamically. While this is just one example, it shows that 
sample covariance structures can show complex patterns and that the correlation model 
developed here is capable of representing such structures reasonably well. Note that this 
approach is challenging to evaluate systematically (Figure 4.2.1 shows the covariance for one 
day and relative to one location). 

 

Figure 4.2.1: Spatial covariance for selected location northeast of Svalbard (black circle) from 
the developed covariance model on the SIC product from Feb. 21, 2016 (left) and the sample 
SIC covariance with correlation pattern based on the years 2007 to 2016 for the same day 
(right).  

For comparison and generalization of the previous finding we now use correlation length scales 
from the CCI SIC validation and inter-comparison report (PVIR) 
(https://climate.esa.int/documents/76/Sea_Ice_Thickness_Product_Validation_and_Intercomp
arison_Report_1.1.pdf). These global SIC correlation length-scale estimates, kindly provided 
by Stefan Kern, represent the approximate circular radius of correlation in the SIC product and 
SIC uncertainty product. They are therefore not suited to directly constraining the parameters 
of our error correlation model, particularly not the non-circular components. 

In the PVIR, MODIS data are used to identify regions with >=90% (labeled ’Pack Ice’) and 0% 
SIC (labeled ’Ocean’) and 31 day periods of the CCI product derivation from these values is 
used to calculate a sample correlation. The availability of MODIS SIC estimates is limited by 
clouds, so that this analysis is applied to windows of opportunity and represents only errors for 
cloud free conditions. The correlation length-scale are calculated by defining rings around the 
currently investigated cell and fitting an exponentially decaying function to the average 
correlation within each ring. This is repeated for each cell and day. The reported correlation 
length hence corresponds to the distance at which the correlation towards the centre cell has 
dropped to approximately 37% 
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Figure 4.2.2: Frequency distributions of 2016 correlation length of the SIC and SIC uncertainty 
variables for preclassified open water locations (left) and pack ice locations (right). Based on 
calculations done for the PVIR.  

In Figure 4.2.2 we see the distribution of correlation length scales for the whole Arctic basin 
within year 2016. Other years and quarterly assessments show very similar results (not shown). 
The differences in SIC error correlation length scales between pack ice and ocean conditions 
are very small (compare left and right of Figure 4.2.2). This is a promising result since it means 
that there are no indications for a dependency on the correlation length on the SIC values or 
between typical pack ice and ocean regions. This provides no information about a potential 
dependency on SIC gradient. The SIC uncertainty product has shorter correlation scales than 
the SIC product (red vs. black histograms). The range of values is mostly between one hundred 
to a few hundred kilometres.  

Lastly, we approach the error correlation by triangulation of independent satellite SIC products. 
This approach avoids any assumptions about the real state of the SIC (y) since it is the same for 
all SIC products and cancels out when basing the calculations solely on the differences in SIC 
products. Figure 4.2.3 illustrate this approach and provides the derived equations which assume 
that the unbiased SIC product errors (e1 to e3) are independent between the products. This 
assumption might not be justified, considering similarities in used satellite sensors, frequency 
bands and retrieval approaches. 

For Figure 4.2.4 we use daily SIC fields from all days in February (excluding the 29th) for the 
years of 2003 to 2017 (excluding 2012 and parts of Feb. 2016 due to missing data). It is based 
on the CCI+ SIC, NASA team algorithm (as provided by NSIDC, doi: 
https://doi.org/10.7265/N59P2ZTG) and SSMI/ASI algorithm (as provided by the ICDC 
https://icdc.cen.uni-hamburg.de/seaiceconcentration-asi-ssmi.html). Here we can combine 
several years of February data due to reduced dependence of the real state of the sea ice for this 
approach.  
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cov(e1)≈
1
2

(cov(Z12)− cov(Z23)+cov(Z13))

cov(e2)≈
1
2

(cov(Z12)+cov(Z23)− cov(Z13))

cov(e3)≈
1
2

(− cov(Z12)+cov(Z23)+cov(Z13))
 

 

 

Figure 4.2.3: Schematic of SIC error triangulation 
and corresponding derived equations with y representing the real SIC, ei being the error of SIC 
product i and Z_ij being the difference in SIC product i and j.  

 

Figure 4.2.4: Covariance estimates (equations given in Figure 4.2.3) for February (as 
example) of three SIC products (left: CCI+, centre: NASA team, right: SSMI ASI) relative to 
the location marked by a black circle, approx. 200 km south of the Bering strait and just north 
of St. Lawrence Island. 

The covariance estimates in Figure 4.2.4 show some differences between the products. The 
NASA team and ASI products have larger correlation length scales of about 400 km in radius 
(the shown box covers an area of 1600 km × 1600 km) where the CCI covariance seems to be 
more localized. The NASA team product has a stronger connection across the Bering Strait then 
the ASI product and shows in addition lower covariance along the coasts. 

A major question is how reliable these estimates are; the assumption of independent errors of 
the products might not hold. To investigate the robustness of our approach we use a fourth SIC 
product (the Bootstrap Algorithm from the NSIDC doi: https://doi.org/10.7265/N59P2ZTG) 
and repeat the above analysis with each possible pair of three. We investigate the dependency 
of the CCI+ SIC product error covariance estimate on the choice of the two other products 
which are used to derive it. Ideally all three covariance estimates in Figure 4.2.5 would be in 
good agreement. While there are some consistent features (e.g., reduced CCI+ covariance 
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across the Bering strait and mostly increased covariance near the coast), there are also 
substantial differences (Figure 4.2.5). This is thought to be caused by a failure of the 
independence assumption between the SIC products. We derived error covariance estimates for 
all four products and analyzed other locations and seasons and find that this approach appears 
to be more suited for the NASA Team and ASI algorithms (higher consistency, not shown). 
There are two likely reasons for this. (1) CCI+ error correlations are typically weaker which 
makes it more likely that weaknesses in these estimates are overpowering the signal and/or (2) 
the cross-product error correlations are in such a way that they do have a stronger impact the 
CCI+ product (which is not a quality characteristic). In the equations, allowing for a positive 
cross-product error correlation for two of the three involved SIC products results in an 
underestimation in the spatial error covariance estimates of the two correlated products and an 
overestimation of the spatial covariance of the third, independent SIC product. 

 

Figure 4.2.5: Covariance estimates (equations given in Figure 4.2.3) for February of the CCI+ 
SIC product based on triangulation with three sets of other SIC products (left: SSMI/ASI + 
Bootstrap, centre: NASA team + SSMI/ASI, right: NASA Team + Bootstrap) relative to the 
location marked by a black circle, approx. 200 km south of the Bering strait and just north of 
St. Lawrence Island. 

 

Synthesis 

We developed an SIC error correlation model and attempted to constrain the corresponding 
parameters based on a statistical analysis of the data. None of the approaches (individual SIC 
sample correlations, re-analysis of the PVIR circular correlation estimates and a triangulation 
of error correlations by a combination of several SIC products) lead to a robust estimate of the 
model parameters. It did, however allow us to improve our understanding of the SIC error 
characteristics and cross-product correlations. Overall, spatial covariance structures can have 
significant non-circular components (Figure 4.2.1), correlation length scales are rarely below 
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100 km and frequently reach several hundred km (Figure 4.2.2, Figure 4.2.5), and there are 
weak indications for increased covariance pattern in the CCI+ products near land (Figure 4.2.5, 
centre and right). Our correlation model is capable of incorporating all those findings. The lower 

bound of correlation length (
l x0 ) should be chosen to be no less than 100 km and the sum of 

the two additional length scales ( l xL and l xSLC ) should be at least a few hundred km to cover 
the whole range of SIC error correlation length scales found (Figures 4.2.1, 4.2.2 and 4.2.5). If 
simple circular error correlation models are used we would suggest a few hundred kilometres 
as length scale. Note that neglecting the error correlation when e.g., deriving the SIA uncertainty 
would result in an implicit decision to set the characteristic error correlation length scale to a 
value well below the SIC product resolution (zero), which would in general not be in agreement 
with our results. 

Publications 

None so far, but we plan to describe related concrete plans in the next version of this report. 

 

Interactions with the ECVs used in this experiment 

Interactions between the CMUG and ECV projects for work on this WP in particular happened though 
an email exchange with CCI+ SI team members (Thomas Lavergne, Stefan Hendricks and Stefan Kern) 
as well as joining and presenting at meetings, including CCI+ colocation meetings and the CCI+ SI 
progress monitoring meeting in March 2021.  

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 



CMUG CCI+ Deliverable  
Reference:  D4.1: Exploiting CCI products in MIP experiments 
Submission date:  14 October 2021 
Version:  2.1 

 
 

21 of 61 

 

4.3 Evaluation of model results considering the abstraction level  
of observational products 

 

Lead partner: MPI-M 

Author: Andreas Wernecke 

 

Aim 

The aim of this research is to develop and apply a framework that allows one to estimate the 
ideal abstraction level at which a model evaluation should be carried out. It will address the 
following scientific question: At which observational abstraction level should we evaluate 
large-scale model simulations? 

Summary of Work and Results 
The abstraction level of observational data has many layers. Taking the example of sea ice, 
‘observations’ can refer to anything from the sensor measurements themselves to the strength 
of a process, like the observed ice mass flux through the Fram Strait. Generally speaking, model 
evaluations can be done at a level close to what is measured (which we call a small abstraction 
level), at a level close to model variables (a more traditional approach) or at the process level 
(high abstraction) which can be extracted from both observational products and models.  
 
In the traditional approach, measurements of satellite sensors (here we focus on satellite-based 
measurements due to the exceptional importance for climate model evaluations) are processed 
towards physical properties like e.g., the area fraction of the ocean covered by sea ice (Sea Ice 
Concentration, SIC). Processing includes sensor calibration and georeferencing, geometrical 
and signal interference corrections, corrections for extraterrestrial radiation and atmospheric 
influences as well as attribution of portions of the signal to different surface types (including 
snow, land, etc.) and other aspects inferred with the variable retrieved. The latter includes the 
impact of snow (e.g., structure, temperature and thickness), ocean state (e.g., wave spectrum, 
surface films) and land (e.g., surface type, temperature) on the sensor measurements and hence 
the retrieval of the SIC. In practice it is often necessary to use auxiliary data for those corrections 
(such as near surface air temperature to identify likely surface melt and corresponding changes 
to the snow/ice properties) and to interpolate, including gap-filling in the observational products 
for a systematic assessment of models. These and more factors should ideally be represented 
by uncertainty estimates provided with the products. 
 
The idea behind using smaller abstraction levels for model evaluation is to use model variables 
to simulate what a given state of the modeled system would look like at the satellite sensors. 
These models are also called observation operators. There is a large potential benefit in this 
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approach because many of the before mentioned corrections have their root in the climate 
system and can therefore be part of the modeled system.  
 
One example is the role of the atmosphere in passive microwave SIC estimates. If satellite 
sensor measurements are converted to SIC estimates, the impact of the atmosphere must be 
assumed to be small or corrected by additional data (e.g., climatologies), which will often be 
uncertain themselves. A coupled GCM simulates the atmosphere as well as the ocean and 
cryosphere and can hence make estimates of how the microwave signal should look at the 
satellite, if the climate system as a whole is well represented. On a technical note, atmospheric 
water vapor/ice clouds play only a minor role for most passive microwave frequencies used for 
SIC estimates (which is one reason why they are used), but it has some influence at the near 90 
GHz channel and indirect influence on e.g., the ocean roughness and surface temperatures. 
Another example is the ice thickness for which the altimeter measured ice freeboard (distance 
between ice surface and free ocean) is converted into an ice thickness using, among other things, 
(rough) estimates of the snow load on top of the ice. Within models the current, local snow 
thickness can be simulated together with the ice thickness, so that a model freeboard can be 
easily calculated and compared with the (less erroneous) measured ice freeboard. An off-side 
of using small abstraction levels is the reduced interpret ability. In the last example, a mismatch 
between modeled and observed freeboard does not allow for conclusions whether the ice-, or 
the snow-thickness is wrong which would be a valuable information for model improvements. 
In addition, known model biases in one variable can spread into all parts of the model 
evaluation. The electromagnetic (emission/transfer/reflection) models used to translate model 
variables into sensor level estimates have uncertainties themselves. In addition, climate models 
do not have a direct representation of many aspects the real climate system. This might include 
aspects which are important for operation operators (see e.g., the topic of meltponds in Burgard 
et al. 2020b). In Table 4.3.1 and Table 4.3.3 we attempt to summarize the before-mentioned 
factors as model uncertainty. 
 
Even though sensor level model evaluation has been successful in other fields (including 
studying the formation of galaxies [Bower et al. 2010]), it is a newly evolving topic in the field 
of remote sensing of sea ice [Richter et al. 2018, Burgard et al. 2020a, b]. Radar altimeter return 
shapes (waveforms) have been modeled for freeboard retrievals [Kurtz et al. 2014], but not for 
model evaluation.  
 
On the other extreme, deriving estimates of a process strength (e.g., Fram Strait ice flux, 
Atlantic meridional overturning circulation etc.) can be very effective to reduce observational 
uncertainties and be highly informative for model development. However, it is often not 
possible to identify a single process which is a good metric for model quality in general. The 
potential for process-based evaluations is therefore strongly dependent on the application, so 
that we restrict ourselves here to high abstraction level measures which are directly related to 
model variable fields and are widely applicable. 
 
 
Table 4.3.1: Overview of uncertainties in observations and from observation operators (Model 
unc.) related to Sea-ice concentrations. All values are rough estimates and vary from 
satellite/product/study to satellite/product/study as well as regionally and over time. 
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Abstraction 
Level 

Quantity Units Observation unc. Model unc. 

Sensor Microwaves TB K <1% <=10% (1, 7) 
Thermal infrared TB K <1% Unknown 

Area fraction SIC % <10% (2, 3, 8) 0 
Potential open water 
fraction 

% ~10% (5) Unknown 

Hemispheric 
measures 

SIA km² <10% (March), 
<25% (Sept.) (3, 6) 

0 

SIE km² <5% (March), 
<10% (Sept.) (3) 

<1% (March), 
<10% (Sept.) (3) 

 
Table 4.3.2: Complementary information to Table 4.3.1 
 Notes to Table 4.3.1 
1 Errors from GCM simplifications vs. high resolution model (Burgard et al. 2020a) and 

vs assimilated SIC (Burgard et al. 2020b) typically below 10K TB 
2 Ivanova et al. 2015; SIC uncertainty frequently reaches ~40% in the marginal ice zone 

due to interpolation errors (see reference in note 4) 
3 Notz 2014 
4 SICCI Phase 2 SIC Product User Guide (SICCI-PUG-P2-17-09) 
5 Drüe and Heinemann 2004 
6 Most of this uncertainty is caused by biases, trends are more certain 
7 Differences in TB due to transfer model up to 15K, Richter et al. 2018 

8 CCI+ Sea Ice ECV Sea Ice Concentration PVIR (D4.1) 

 
Table 4.3.3: Overview of uncertainties in observations and from observation operators (Model 
unc.) related to radar-based Sea-ice thickness estimates. The focus on radars is because of the 
availability of long, continuous time series which are essential for model evaluations. All values 
are rough estimates and vary from satellite/product/study to satellite/product/study as well as 
regionally and over time. 
 
Abstraction Level 

Quantity Units Observational unc. Model unc. 

Sensor Echo return W <15cm (1,3) Unknown (2) 

Vertical extend on 
25kmX25km grid 

Ice freeboard m <=10cm (3, 4) 0 

Draft m <1m (4, 5) 0 

SIT m <=1m (3, 4) 0 

 
Table 4.3.4: Complementary information to Table 4.3.3 
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 Notes to Table 4.3.2 

1 Wingham et al. 2006, for individual measurements 

2 Kurtz et al. 2014 model Cryosat-2 Waveformes and fit them to measurements but do 
not asses the uncertainties in the waveform modelling or sensitivity to variables 
whichare not covered in GCMs. To our knowledge there is no such assessment in the 
literature. 

3 Ricker et al. 2014 

4 CCI+ Sea Ice ECV SIT PVIR 

5 Reported ice draft RMSE with validation products are largely smaller than 1 m but 
very low correlation coefficients and poor apparent performance in Fig. 15 in the SIT 
PVIR make us increase this uncertainty. SIT PVIR (Section 3.2.1) reports a RMSE 
of 55 cm with submarine measurements and 14 cm with buoy data   

 
As can be seen from Tables 4.3.1 and 4.3.3, there is so far no proven reduction in uncertainties 
by using observation operators since the added uncertainties from linking the model variables 
to observed satellite signals are similar to the uncertainties in traditional observational products 
(SIC and SIT). It should be mentioned that the potential for improvement of observation 
operators is large. That is because they are just evolving and because each generation of climate 
models is expected to cover more aspects of the climate system which makes it likely that 
observation operators can improve in simulating the sensor signals.  
 
The ice freeboard, however, has a smaller observation uncertainty than the ice thickness. This 
is expected to remain the case when considering relative uncertainties (the freeboard is smaller 
than the ice thickness). Climate models routinely simulate sea ice thickness, snow 
cover/thickness and have a water, ice and snow density, so that a climate model consistent ice 
freeboard can be easily calculated. The absent model uncertainty in Table 4.3.2 for ice freeboard 
indicates that all variables are available in the model to exactly calculate the ice freeboard, it 
does not mean that said variables values match real world values. This leads to the main reason 
why one might want to consider using the ice thickness for model evaluation instead of the ice 
freeboard (despite its smaller uncertainty). When comparing observed and modelled freeboard 
it is not clear whether mismatches originate from a poor representation of sea ice in general or 
for example from errors in the local snow density. While the first would probably be a reason 
for concern, the latter might be acceptable.  
 
In summary, currently the only reduction in observational uncertainties which is not offset by 
uncertainties in observation operators, we could find here, is the use of ice freeboard instead of 
ice thickness. Whether the ice freeboard should be used for model evaluation further depends 
on the need for interpretability in the model evaluation. 
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Publications 

None so far, but the interest in the results leading to a journal or conference publication will be 
described in the next version of this report. 

Interactions with the ECVs used in this experiment 
There have been interactions with the SSS, Snow, SST, SI and LST CCI ECV projects at the 
quarterly CSWG meetings and the Integration meetings. We have been in regular contact with 
the CCI SI team, attending progress meetings and through the preparation of the Sea Ice 
Climate Assessment Report.  

Consistency between data products 

No inconsistencies found so far. 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.4 Optimal spatial and temporal scales for model evaluation 

Lead partner: MPI-M 

Authors: Andreas Wernecke 

 

Aim 

The aim of this research is to develop and apply a framework that allows one to estimate the 
ideal spatial and temporal time horizon at which a model evaluation should be carried out to 
minimize the impact of observational uncertainty. It will address the following scientific 
question: At which time and space scale should we evaluate large-scale model simulations? 

Summary of Work and Results 

So far, our work on this topic addresses optimal spatial and temporal scales separately. This is in line 
with common practice where typically spatial averaging is done for each time slice, and temporal 
averaging is either done for each location separately or on globally aggregated quantities. However, the 
results presented here are nevertheless expected to be informative for simultaneous spatio-temporal 
averaging. The concept of optimal scales is clearly dependent on the application. If interested in 
evaluating seasonal process representation in a model, shorter averaging periods are necessary than for 
decadal evaluations. We will hence focus on the possible gains for model evaluations by averaging as a 
function of reduced information, which can be assessed by the Degrees of Freedom (DoF) of a dataset. 
In other words, if most gains (e.g., reduced observational uncertainties) manifest by averaging on short 
scales, the optimal scale for model evaluation will be shorter as well since less loss of information/DoF 
has to be tolerated.  

Spatial scales 

Here we borrow the concept of a Fractions Skill Score (FSS) from evaluations of rain forecast models. 
The idea is that the exact locations of rain (typically defined by a threshold on the precipitation) in a 
forecast might be mis-located for local rain events even if the regional forecast is of good quality. In this 
case the model would be unnecessarily penalised on a grid-cell by grid-cell evaluation even if 
performing well overall. Sea ice is comparable to rain locations in that it is binary on a very small scale 
and that we do not expect global models to correctly reproduce the exact locations of each patch of ice. 
On the other extreme, focusing solely on global measures (like SIA) might unnecessarily discard valid 
information. The FSS is a straightforward measure of the quality of agreement over all spatial 
resolutions. It is the normalized mean squared error between two fields which is calculated for increasing 
levels of spatial signal smoothing. This smoothing is realized by a mean-filter with increasing box size 
from the original resolution (where the mean filter has no effect) to box sizes larger than the domain, 
where each location is assigned the domain mean value. We adjust the calculation for the influence of 
land, so that land covered cells have no influence on the calculation of the nearby mean-filtered SIC. In 
the following we will first test the behaviour of the FSS on a toy example representing an ice floe 
attached at different locations to an ice front. After that we apply the FSS on MPI-ESM model 
simulations in a perfect model approach to investigate how inter-model differences reduce with effective 
resolution and finally use CCI+ SIC observations as an example of model evaluation with the FSS. 
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Sea ice fractions skill score – proof of concept 

Figure 4.4.1: Fractions Skill Score (FSS, right) for a test case (left) in which an ice tongue/floe at the 
edge of a pack ice field has been moved by 15 cells to the left (compare left and centre). The black dotted 
line shows this 15-cell offset in the FSS panel and the red dashed line indicates a proposed threshold 
where the FSS increased by 63% from the n=1 to the maximal FSS. 

Figure 4.4.1. shows a test case for applying the FSS on sea ice. Here the main feature in the SIC 
field is offset by 15 grid cells and the FSS quickly increases around this spatial scale. We also 
highlight the FSS for which the difference between the FSS and max(FSS) has fallen to 1/e 
from the initial value (red dashed line in Figure 4.4.1, right panel). The size of the filter box 
which crosses this threshold (here 21 grid cells) is used as estimate of where most of the gain 
in FSS is achieved. To better understand the meaning of this measure, called ñ, we address test 
cases similar to Figure 4.4.1 but with a range of different ice tongue offsets and derive ñ for 
each of them.  

 
Figure 4.4.2: Mean-filter box size for which FSS increased at least 63% from size=1 to max(FSS) (ñ, y-
axis) versus displacement of ice tongue/floe in number of boxes (x-axis). 

As can be seen in Figure 4.4.2, the value of ñ increases approximately linearly with the 
displacement of the ice tongue (for displacements>0) with a slope of ~1 and a positive y-axis 
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offset of about 5. This y-axis offset corresponds to about half of the ice tongue width, which we 
also find for other widths (not shown).  

In summary, the spatial scale at which the FSS increases quickly depends bi-linearly on the 
mean offset between patches of ice and their typical sizes. If those two factors are small, a 
comparison of the two underlying fields can be done with higher spatial resolution since local 
features have more constrained size and location. 

Before we apply the FSS to compare model and satellite observations we will establish a 
baseline purely from climate model data. This is done to see on which scales MPI-ESM grand 
ensemble (GE) SICs begin to harmonize as an internal model characteristic before we use the 
FSS to investigate the agreement between satellite observations and model simulations. 
Thereby we will get a better understanding of how well model results can be expected to agree 
with observations on a large number of scales.  

Sea ice fractions skill score – perfect model test 

We use the MPI-ESM GE member #1 as reference and derive the FSS. In the following we 
selected northern hemisphere February and September data (near the yearly sea ice maximum 
and minimum) of 2005 as examples. We brought all datasets to a 50 km X 50 km north polar 
stereographic grid. 

Figure 4.4.3 shows the FSS between 99 MPI-ESM GE simulations and the selected reference. 
It can be seen that most of the gain in FSS is achieved in the first ~1500 km, allowing the 
following conclusions. The typical size of features in the SIC data which are displaced is below 
1500 km. In addition, the distance those patterns are displaced is mostly below 1500 km as well. 
It is worth mentioning that the difference in total SIA (color coded in Figure 4.4.3) shows no 
clear relation to high or low FSS (maybe with the exception of two outliers in September), 
supporting the notion that the analyzed information (distance and size of displaced pattern) is 
indeed independent information from the total SIA and as such provides additional value for 
model evaluations. While the shape in FSS gain is largely in agreement between February and 
September, the absolute FSS is smaller in September. To reach a specific FSS, larger spatial 
averaging intervals have to be used in September than in February. This is could well be related 
to the fact that the coast of the Arctic Ocean is becoming a fixed boundary for the sea ice in 
winter creating higher spatial agreements. Figure 4.4.3 also includes the Degrees of Freedom 
(DoF), approximated by the number of initial ocean grid cells divided by the grid cells used in 
the moving window of the mean-filter. While the DoFs drop sharply with box size, it should be 
noted that, e.g., for a box side length of 1000 km, there are still approximately 100 DoF. 
Compared with just one DoF for hemisphere wide measures and about 10 if the Arctic is divided 
into its marginal seas, this is still a relatively large number. This figure further provides the level 
of agreement which can be expected for different model simulations at a given resolution of 
interest. 
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Figure 4.4.3: Fractions skill score of model simulations relative to a selected reference model 
simulation (#1) for northern hemisphere SIC in February (left) and September (right). Also 
included are the DoF with effectively degraded spatial resolution (green dashed line) and the 
difference in total sea ice area (color coded). 

Finally we calculate ñ for each simulation and provide the resulting frequency distribution in 
Figure 4.4.4. The distribution of ñ does not change notably between February and September.  

 

Figure 4.4.4: Frequency distribution of ñ for February (left) and September (right) with one 
simulation as reference. 

 

Sea ice fractions skill score – CCI+ SIC with model simulation 

We now repeat the above exercise with monthly mean CCI+ SIC data as reference. In this case 
(Figure 4.4.5 and Figure 4.4.6) the February and September FSS show more differences. The 
February FSS has slightly lower values for small box sizes (I.e., high spacial resolution) 
compared to the previous inter-model results (Figure 4.4.3 left). This could be related to the fact 
that the native model grid has a smaller resolution or that physical processes near the model 
resolution are not represented as well. In both cases the regriding to 50 km X 50 km effectively 
oversamples the data. Comparing the satellite data with a real resolution close to 50 km with 
smoother model data reduces the FSS at the lower end of Figure 4.4.5 (left). This reduction in 
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FSS at the lower end of mean-filter box size also explains the smaller values for ñ. It summarizes 
the fact that, due to the mentioned effective oversampling, model evaluations benefit more by 
spatial averaging on relative short scales.  

Figure 4.4.5: Fractions skill score of model simulations relative to northern hemisphere CCI+ 
SIC observations in February (left) and September (right). Also included are the DoF with 
effectively degraded spatial resolution (green dashed line) and the difference in total sea ice 
area (color coded). 

 

Figure 4.4.6: Frequency distribution of ñ for February (left) and September (right) with CCI+ 
SIC observations as reference 

The September estimates have much larger differences in total SIA (the modelled SIA is smaller 
than the observed, not shown) and require more spatial averaging to reach elevated FSSs. This 
points at a more substantial mismatch between model and observations. Figure 4.4.7 illustrates 
this mismatch where the difference in SIA (approximately 0.8 million km²) is high but not worse 
than some inter simulation differences (Figure 4.4.3). The spatial distribution is clearly worse 
with the simulation showing large areas with intermediate SIC between 40% and 80% and the 
observations show a smaller extent with higher concentrations. The FSS hence correctly 
identifies pattern mismatches of concern, identifies simulations which are less prone to these 
(i.e., the simulations with higher FSS in Figure 4.4.5, right) and suggests that larger spatial 
scales are needed for meaningful model evaluations around the yearly sea ice minimum than 
around the sea ice maximum. 
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Figure 4.4.7: Sea-ice concentration for September 2005 from CCI+ satellite observations (left) 
and MPI-ESM GE run #1 (right).  

Temporal scales 

For the evaluation of optimal temporal scales, we follow a similar approach as for spatial scales. 
We start with the full data resolution (daily) and monitor the development of quality metrics 
while degrading the resolution. Instead of a spatial mean-filter on time slices we use averages 
of temporal bins in the SIA anomaly time series. To derive the anomaly, we use the daily SIA, 
subtract the yearly cycle and linear trend. The quality metrics are the correlation coefficients 
and standard deviations of time series. The correlation coefficient requires a common signal in 
the time series to be meaningful. Here, the signal is the variability in the SIA which is not the 
same for any two long term climate model simulations. Instead, we use observational datasets 
which share the same real SIA variability as the signal and differ by observational uncertainty. 
The products used are the NASA-Team, Bootstrap and NASA-Merged algorithms (all 
processed by NASA) as well as the OSI-SAF algorithm. The NASA-Merged product is a 
combination of NASA-Team and Bootstrap algorithms and the OSI-SAF data are used here 
instead of the CCI product due to the longer period covered (but they are closely related for the 
period when they overlap).  
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Figure 4.4.8: Time series (left) and Taylor-diagrams (right) between different observational 
SIA data products (shown are detrended anomalies). The NASA-Team product has been 
selected as reference (black lines and star) but other choices show the same picture. The 
temporal resolution has been degraded from the original daily (where available, top) to 30-day 
averages (middle) or 90-day averages (bottom). 
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As can be seen in Figure 4.4.8, the fluctuations in the SIA time series reduces with degraded 
resolution (note also the different axis ranges for the standard deviation on the Taylor diagrams) 
which can be attributed to reduced observational uncertainties as well as a loss of resolved real 
SIA variability. The correlation between the SIA products in Figure 4.4.8 increases which 
shows that the reduction in uncertainty is larger than the loss in resolved variability. The optimal 
temporal scale for model evaluation would ideally be such that observational uncertainty is 
averaged out but the signal (I.e., real SIA variability) is preserved. While such an ideal scale 
will not exist, we have a look at the relationship between standard deviation and correlation for 
a range of temporal scales in below. 

 
Figure 4.4.9: Standard deviation vs. correlation coefficient towards NASA-Team SIA time 
series of the three remaining products for several averaging periods (dots). For comparison, 
analytical results (lines) for which the uncertainty and signal are considered autoregressive 
models of order one with different temporal correlation length scales for the observational 
uncertainty (tau_n) and constant temporal correlation length scale for the real SIA variability 
(tau_y), here selected to be 20 days. The percentage values correspond to the fraction of 
uncertainty- to signal length scales. See text for more information. 
 
When increasing the averaging window, the correlation is strongly increasing at first with 
moderate losses in anomaly fluctuations up until 30 to 60 days (Figure 4.4.9). After this larger 
window sizes result in reduced anomaly fluctuations with no further gains in correlation. From 
this we conclude that temporal averages can be useful (depending of course on the application) 
to reduce observational uncertainties up until about two months. After this no additional 
advantage is expected.  
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For a better understanding of the results, we derived analytical solutions for a statistical 
representation of these time series. For this we assume the SIA anomaly and observational 
uncertainties to be independent and represent both by separate zero-mean autoregressive models 
with order one (AR(1)). These have a white noise term and a memory term so that we can 
prescribe the amplitude of fluctuations and the characteristic autocorrelation length scale. 
Observational products are represented by the sum of the uncertainty AR(1) and the signal 
AR(1). Since any two products have independent, identical uncertainty models but share the 
signal model, we can use conditional likelihoods to derive the analytical correlation between 
them. For AR(1) models we can also find the standard derivation and correlations of temporal 
averages. For Figure 4.4.9 we force the statistical models to match the standard deviation and 
correlation of the observations for the daily data and set a range of temporal correlation length 
scales manually. The behavior for increasing averaging windows is in first order defined by the 
ratio of the two autocorrelation length scales (not shown). 
 
The results from the observations largely follow the theoretical results with uncertainty 
autocorrelation of 3 to 5 days for signal autocorrelation of 20 days. This corresponds to 
uncertainty autocorrelation length of 15% to 25% of the signal autocorrelation length. A similar 
relation is also found for other theoretical signal length scales (not shown). This suggests that 
the observational uncertainty autocorrelation scale is likely to be about one fifth of the real SIA 
anomaly autocorrelation scale.  
 
To summarize this WP, we analyzed the impact of spatial and temporal SIC degradations on 
the quality of model and observational agreement. For MPI-ESM GE simulations we find that 
most of the benefits from spatial averaging are realized below 1500 km and we can provide 
users with an estimate of expected model quality spread for averaging on any specific scale. 
Evaluating model data (long term climate simulations without data assimilation or initialization 
in SIC observational period) with CCI SIC observations show that substantially larger 
averaging intervals are needed around the yearly sea ice minimum than around the sea ice 
maximum. In other words, the medium to high resolution spatial agreement in SIC is 
considerable worse in September than in February.  
 
For temporal averaging we find that the time series fluctuations (consisting of error fluctuations 
and real variability) reduce moderately for averaging periods of up to about two months. At the 
same time the correlation between SIA products increases, while for longer averaging periods 
the correlation is not further benefitting but the fluctuations keep reducing. This indicates that 
at first the errors reduce, after which more and more of the real signal is lost. With the help of 
theoretical considerations, we estimate that the temporal autocorrelation of observational 
uncertainties is expected to be around one fifth of the length scale of the SIA variability. If the 
typical period of a process of interest is known, it should therefore be sufficient to base any 
analysis on temporal averages with a resolution of a fifth to a quarter of the period of interest 
to minimize the influence of observational uncertainties. 
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Publications 

None so far, but the interest in the results leading to a journal or conference publication will be 
described in the next version of this report. 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the SSSal, 
Snow, SST, SI and LST CCI ECV projects at the quarterly CSWG meetings and the Integration 
meetings. Contact outside that has been only to check on the continuation of the SI and SST 
projects, and to learn about the beta data that LST announced was available in late 2019.  
Interactions with the SIMIP project are planned for the future. 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will 
be completed in the next version of this report. 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.5 Evaluation of model results considering internal variability 

 

Lead partner: MPI-M 

Authors: Dirk Olonscheck, Dirk Notz 

 

Aim 

The aim of this research is to develop and apply a framework that allows one to consider the 
impact of internal variability into a model-evaluation processing chain. It will address the 
following scientific question: How can we take internal variability into account when evaluating 
large-scale model simulations? 

Summary of Work and Results  

The work done in the first year of this CMUG research period (October 2018 to September 
2019) was on the methodology that will be used on the new CCI+ datasets when they are 
available. The method allows one to easily take model-specific internal variability into account 
when evaluating simulations from global climate models. This lays the methodological basis 
for taking internal climate variability into account when evaluating climate-model simulations 
with the forthcoming CCI+ ECVs. The background research on which the CMUG work is based 
was published in Olonscheck and Notz, 2017, and an evaluation using CMIP5 simulations from 
that paper is shown in Fig. 4.5.1. 

 

 

 

 

 

 

 

 

Figure 4.5.1: 
Schematic view of the method for estimating internal variability for different forcing scenarios. 



CMUG CCI+ Deliverable  
Reference:  D4.1: Exploiting CCI products in MIP experiments 
Submission date:  14 October 2021 
Version:  2.1 

 
 

37 of 61 

The basic version of the method regresses the estimate of internal variability derived from the 
preindustrial control simulation of a model (x axis) on the ensemble standard deviation of 
models with ensemble simulations such as models 1 and 2 (y axis). The unity line as a reference 
is indicated by the dashed black line. For the extended version, a constructed ensemble standard 
deviation can be derived for models with a single simulation (model 3) using the regression line 
through models 1 and 2. The extended version requires a consistent response of the models with 
ensemble simulations. A summary of the scientific outcomes of the research are:  

1. Development of a new method that allows us to consistently estimate internal climate 
variability and its change over time for all models within a multimodel ensemble such 
as CMIP5 by regressing each model’s estimate of internal variability from the 
preindustrial control simulation on the variability derived from a model’s ensemble 
simulations. 

2. We find a highly variable model-specific internal variability of sea-ice volume and sea-
ice area. 

3. The method allows for the evaluation of climate-model simulations by uniformly taking 
model-specific internal variability for all models into account. 

Publications 

None so far, but the interest in the results leading to a journal or conference publication will be described 
in the next version of this report. 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the SSSal, Snow, 
SST, SI and LST CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. 
Contact outside that has been only to check on the continuation of the SI and SST projects, and to learn 
about the beta data that LST announced was available in late 2019.  Interactions with the SIMIP project 
are planned for the future. 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 

 



CMUG CCI+ Deliverable  
Reference:  D4.1: Exploiting CCI products in MIP experiments 
Submission date:  14 October 2021 
Version:  2.1 

 
 

38 of 61 

 

4.6 Evaluation of model results considering a combination of sources 
of uncertainties 

Lead partner: MPI-M 

Authors: Dirk Olonscheck, Dirk Notz 

 

Aim 

The aim of this research is to develop and apply a framework that allows one to include both 
observational uncertainty and uncertainty arising from internal variability into a model-
evaluation processing chain. It will address the following scientific question: How can we take 
observational uncertainty and internal variability into account when evaluating large-scale 
model simulations? 

Summary of Work and Results 

The work done in the first year of this CMUG research period (October 2018 to September 
2019) was on the methodology that will be used on the new CCI+ datasets when they are 
available. The introduced plausibility variable (below) allows one to take both model-specific 
internal variability and observational uncertainty into account for evaluating climate-model 
simulations. We did so to evaluate the CMIP5 climate-model simulations as shown in Fig. 4.6.1. 
This comprehensive evaluation approach will be applied to comparing climate-model 
simulations with the CCI+ ECVs. The background research on which the CMUG work is based 
was published in Olonscheck and Notz (2017). 

We introduce a plausibility variable as a measure of model fidelity, which takes both the model-
specific internal variability (sigma_mod) and the observational or reanalysis uncertainty 
(delta_ref) into account: 

 

 

This approach to evaluate climate-model simulations considers both internal variability and 
observational uncertainty and thus links to Task 4.2. 

The results allow for a distinction between model deviations that are plausible due to internal 
variability and reference-data uncertainty and those that cannot be explained by these sources 
of uncertainty, pointing to model biases. 
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Figure 4.6.1: Portrait plot of the plausibility of CMIP5 sea-ice simulations for the 30-yr trend and the 
mean state of (a) Northern Hemisphere sea-ice volume, (b) Northern Hemisphere sea-ice area, and (c) 
Southern Hemisphere sea-ice area based on the distance between each extended historical CMIP5 
model simulation and reference data (PIOMAS for Northern Hemisphere sea-ice volume and satellite 
sea ice data from a CCI precursor dataset, Meier 2013, for sea-ice area). Deviations are shown in units 
of “phi”, which combines delta_ref and sigma_mod; a model’s negative (red) and positive (blue) 
deviation with respect to reference data are indicated. Note that each model name is attached to the first 
ensemble simulation only. 

 

Publications 

None so far, but the interest in the results leading to a journal or conference publication will be 
described in the next version of this report. 

 



CMUG CCI+ Deliverable  
Reference:  D4.1: Exploiting CCI products in MIP experiments 
Submission date:  14 October 2021 
Version:  2.1 

 
 

40 of 61 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the SSSal, 
Snow, SST, SI and LST CCI ECV projects at the quarterly CSWG meetings and the Integration 
meetings. Contact outside that has been only to check on the continuation of the SI and SST 
projects, and to learn about the beta data that LST announced was available in late 2019.  
Interactions with the SIMIP project are planned for the future. 

 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will 
be completed in the next version of this report. 

 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.7 Skill assessment of the DCPP decadal predictions 

 

Lead partner: BSC 

Authors: Roberto Bilbao, Jaume Ruíz de Morales, Froila Palmeiro, Pablo Ortega and Louis-
Philippe Caron. 

Aim 

The aim of this WP is to produce an extensive model skill assessment of the decadal hindcasts 
done within DCPP (Decadal Climate Prediction Project, Boer et al. 2016; thus contributing to 
CMIP6 initiative) with the longest CCI products available as an independent source for 
validation, thus testing at the same time the consistency of CCI data with the reference datasets 
used for their initialization. It will address the following scientific questions: 

1. Which are the regions/variables with more skill for decadal prediction across climate 
models? 

2. Can CCI/CCI+ data help to identify if these are robust across datasets? 

3. Does skill arise for different variables over the same region? 

4. Can this help to identify the processes behind the skill? 

Summary of Work and Results 

Preliminary skill assessment of the EC-Earth decadal prediction system based on ocean 
reanalyses and objective analyses: 

The skill of decadal prediction systems is typically assessed by performing large sets of 
retrospective predictions (or reforecasts) that are later contrasted against the observed past 
variability. For the EC-Earth decadal predictions used in this WP, the reforecast period used 
goes from 1960 to 2020, with 10-member ensembles of predictions initialised every 1st of 
November. Because the longest satellite observations are only available, in the best case, since 
1979, leaving 20 start dates out of the skill assessment, we started the analysis (version 1 of 
D4.1) by performing a first assessment against longer ocean datasets, namely the ocean 
reanalyses and objective analyses: ORAS5, EN4 and HadISST, to account for the observational 
uncertainty.  

The BSC completed the decadal reforecasts by September 2019, and contributed with them  to 
the Decadal Climate Prediction Project (DCPP) component A of the World Climate Research 
Programme (WCRP).  The decadal predictions are performed with a resolution of T255L91 in 
the atmosphere and 1° and 75 vertical levels in the ocean. The initialization technique used is 
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full-field initialisation. Atmospheric initial conditions were generated using ERA-40 and ERA-
Interim. Land initial conditions were taken from ERA-40 prior to 1979. From then onwards 
ERA-Land was corrected with GPCP observations and used as land initialisation. Ocean and 
sea-ice initial conditions were produced using a NEMO-only simulation forced by DFS5.2 
atmospheric fields and nudged towards ORAS4. 

The preliminary analysis of skill in the EC-Earth hindcasts was carried out for monthly-mean 
global-mean sea surface temperature (SST) (Figure 4.7.1a) and several climate variability 
indices derived from SST: the Atlantic Multidecadal Variability (AMV) index (Figure 4.7.1c) 
calculated with the Trenberth and Shea (2006) definition, and El Niño Southern Oscillation 
(ENSO) index (Figure 4.7.1e) defined as the SST average over the Nino3.4 box (5S-5N and 
170-120W). Beforehand, anomalies had been computed from the raw predictions with respect 
to the period 1970-2005 using a lead-time dependent climatology. To quantify the deterministic 
skill the anomaly correlation coefficient (ACC) was used (Figure 4.7.1).  

The ACC of global-mean SST in EC-Earth hindcasts showed high skill for the 5 first forecast 
years (Figure 4.7.1b). A large part of the skill of the decadal predictions is associated with the 
global warming trend, as later demonstrated in Bilbao et al. (2021), by computing the skill in a 
set of non-initialized CMIP6 historical simulations (DECK+ScenarioMIP) in which only the 
externally forced changes are represented. Interestingly, Figure 4.7.1d also shows that the model 
has high skill in reproducing the AMV, which is a mode of internal variability that is not 
predicted in the historical experiments. The same happens for ENSO, which the DCPP 
simulations are capable of skilfully predict during the first forecast year. We also note that all 
of these results are consistent independently of the observational product that is used to compute 
the skill. A more detailed analysis of the skill in this decadal prediction system with EC-Earth 
can be found in Bilbao et al (2021). 
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Figure 4.7.1: a) Annual-mean global mean SST for forecast lead time year 1 for the ensemble mean 
decadal predictions (black), individual members (grey) and three observational products: ORAS4 (red), 
EN4 (blue) and HadISST (green)). b) Anomaly correlation coefficient (ACC) of the ensemble mean 
hindcasts and observations. c) As figure a) but for the AMV (Trenberth and Shea, 2006 definition). d) 
ACC of the AMV. e) As figure a) for the Niño3.4 index for the first DJF. e) ACC of the Niño3.4 index. 

Decadal Skill assessment against a selection of long and physically related CCI products: 

Jaume Ruiz de Morales, a master student from the University of Barcelona, joined the BSC in 
February 2021 and is conducting a new analysis of the retrospective decadal predictions, 
focused on a more recent period in which they can be evaluated against satellite products, under 
the supervision of Roberto Bilbao (who performed the decadal predictions and did the 
preliminary analysis), Froila Palmeiro and Pablo Ortega. The three main ECVs selected for this 
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analsysis are SST, Sea Level and Cloud Cover, which offer several advantages with respect to 
the data of other ECVs: 1) they are available for more than 20 years, which is key for computing 
robust skill metrics, 2) they have more than one observational product available, which allows 
us to investigate the consistency across them and the sensitivity of the results to the product 
employed, 3) they relate to variables for which decadal predictability is expected, and 4) they 
are, at least to some extent, physically related with each other (e.g., SST can influence cloud 
cover through evaporation and covary with the sea level height in areas in which its thermosteric 
component is dominant). 

The list of products employed and their main characteristics are summarised in the table below: 

Variable (units) Product Time Period Original 
resolution 

Cloud cover (%) EUMETSAT 
ESA AVHRR-PM v3.0 

01/1982-05/2019 
01/1982-12/2016 

0.25º 
0.5º 

Sea Surface Height 
Anomaly (in m) 

C3S 
CMEMS 

01/1993-10/2019 
01/1993-02/2020 

0.25ºx0.25º 
0.25ºx0.25º 

Sea Surface 
Temperature (in °C) 

ESA L4 
HadISSTv1.1 
ERSST 

01/1982-12/2020 
01/1870-12/2020 
01/1854-12/2020 

0.05º 
1ºx1º 
2ºx2º 

Because not all products cover the same period, for each variable only the period of overlap has 
been considered when the skill was evaluated. In addition, all data (both for the model and 
observations) have been regridded to a regular 1°x1° grid for practical reasons. The predictions 
have been evaluated against a dataset resulting from the average of the different datasets 
identified for that variable. This was done to constrain the common signals, which are more 
likely to be true, and average out some of the observational uncertainties, which are expected 
to be different across products. A more detailed assessment of the consistency across the 
different products is included in the section “Consistency across data products” 

Skill assessment of Sea Surface Temperature: We have begun by evaluating the skill to predict 
the SST evolution at different forecast ranges (Figure 4.7.2), in terms of the ACC. In the first 
forecast year, large and significant ACC values are obtained in most regions of the world, with 
the main exceptions of some Polar areas (in which the sea ice might not have been properly 
initialised), and a small region in the Central North Atlantic. A similar pattern was obtained in 
Bilbao et al. (2021) for a longer reforecast period (1960-2018) and against a different 
observational dataset, which confirms that skill is consistent in time and insensitive to the 
validation dataset. Bilbao et al. (2021) also showed that most of this skill arises from the 
externally forced signals, with only a few regions like the Tropical Pacific and the North 
Atlantic Subpolar Gyre exhibiting skill from internal variability processes. At longer forecast 
ranges (years 1 to 5 and 6 to 10, respectively) the ACC values are increased, although this is 
just a consequence of evaluating the forecasts on 5-year means (thus smoothing some of the 
interannual variability noise). We can see, however, that the Central North Atlantic remains as 
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a region of very poor skill, a problem that has been linked in Bilbao et al. (2021) to an 
initialization shock in Labrador Sea deep convection. Other regions like the Eastern Tropical 
Pacific and the Southern Ocean also show very negative ACC values, the first probably 
reflecting a problem in the model representation of the frequency of ENSO, and the second 
probably due to a very strong local warm bias in the EC-Earth version used to perform the 
forecast, which grows with forecast time. Despite these regions of poor skill, most areas of the 
global ocean show high level of predictability even 6-10 years after initialization, an 
encouraging result that speaks about the utility of the decadal predictions. 

Figure 4.7.2: Anomaly correlation coefficient (ACC) for the annual sea surface temperature in 
the CMIP6 decadal prediction system with EC-Earth for forecast years 1 (left panel), 1–5 
(middle panel) and 6–10 (right panel). The ACC is computed between the model ensemble mean 
of the ensemble mean of 3 observational products: ESA L4, HADISSTv1.1 and ERSST. 
Correlation values that are significant at a 95% confidence level are indicated with stippling. 
The skill is assessed for the period 1982-2020.  

Skill assessment of Sea Level Height: The related variable that is directly simulated by the 
model is the dynamic sea level (DSL) as defined in Griffies and Greatbatch (2012), which 
reflects the sea level fluctuations related to ocean dynamics and is computed as the sea level 
anomaly with respect to the ocean geoid (which can vary in time, e.g., if the ocean experiences 
a thermal expansion). By construction this variable has a global mean of zero in every time step. 
To assess the model ability to predict it, we have therefore converted the observations of the 
Sea Surface Height Anomaly (in which the anomaly is computed against a temporal mean 
instead of a spatial mean) to this same quantity by removing the global mean. Figure 4.7.3 
shows very high levels of skill to predict the DSL in the first forecast year both in the Pacific 
and Indian basins. Areas of significant skill are very scarce in the Atlantic, and mostly 
concentrate in the subtropics and the Labrador Sea. At subsequent forecast years (1-5) most of 
the skill is lost, and the major areas of significant skill are the Indian Ocean and the subtropical 
Pacific. Most of the skill is lost in those regions at the longest forecast years (6-10), although 
the Labrador Sea show some promising levels of predictability. It is interesting to note that, 
apart from the first forecast year, the areas of significant skill are different than for SST, which 
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reflects that the processes yielding the predictive skill are different in each case. The same 
analysis has been repeated in Figure 4.7.4, but focused on the absolute sea surface height 
anomaly (i.e. the variable directly measured by satellites). It is important to note that in this case 
this involved adding the global mean sea level to the dynamical sea level within the model. We 
also note that since this version of EC-Earth does not resolve the contributions from continental 
ice sheets and glaciers, sea level changes due to meltwater fluxes are not simulated, and only 
the thermosteric component is resolved (and can be potentially predicted). The ACC figure of 
the absolute sea level changes shows much higher and persistent skill values than for the DSL, 
particularly large in the Tropical regions. This most probably reflects that the global 
thermosteric component (excluded in Figure 4.7.3), which mostly consists of an increasing 
linear trend and is mostly anthropogenic, is highly predictable in the model. 

Figure 4.7.3: The same as in Fig. 4.7.2 but for the dynamic sea level. 

 

Figure 4.7.4: The same as in Fig. 4.7.3 but for the absolute sea surface height anomaly. 
 
 
Skill assessment of Cloud Cover: This analysis has not been finalised and will be included in 
the next version of the deliverable 
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Publications 

A scientific article documenting the production of the decadal prediction system with EC-Earth, 
evaluating its skill against different reanalysis products, and detailing some encountered issues has been 
published in 2021 in Earth System Dynamics: Bilbao, R., Wild, S., Ortega, P., Acosta-Navarro, J., 
Arsouze, T., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Cruz-García, R., Cvijanovic, I., Doblas-
Reyes, F. J., Donat, M., Dutra, E., Echevarría, P., Ho, A.-C., Loosveldt-Tomas, S., Moreno-Chamarro, 
E., Pérez-Zanon, N., Ramos, A., Ruprich-Robert, Y., Sicardi, V., Tourigny, E., and Vegas-Regidor, J.: 
Assessment of a full-field initialized decadal climate prediction system with the CMIP6 version of EC-
Earth, Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, 2021. 

Interactions with the ECVs used in this experiment 

The specific satellite products used in this analysis for the cloud cover and sea level variables 
were been recommended, respectively, by Martin Stengel (DWD) and Jean-François Legeais 
(CLS), when we asked them for advice before the skill assessment was started. The ESA 
product used for SST was presented and recommended by Christopher Merchant in the CSWG 
meeting devoted to SST, SSS and Sea Ice.  

Consistency between data products 
 
To assess the temporal consistency between the different observational products considered, 
we have computed, for their overlap period, the correlations between each pair of products. 
Figure 4.8.4 shows the minimum value of such correlations at the grid point level for the three 
variables considered. Overall, correlations are encouragingly large in most regions of the 
world, which is indicative of strong consistency across products (and suggestive of small 
observational uncertainties in terms of interannual variations). The weakest correlations are 
seen for SSTs in the Southern Ocean, something expected given that this is a region where in-
situ observations (which are considered in two of the datasets compared) are very scarce, and 
therefore larger observational uncertainties remain. Interestingly, we can also see in Figure 
4.7.5 b,d,f that when the long-term trends are excluded (a feature in which the datasets can 
more easily agree), consistency across products remains very high, which suggests that 
uncertainties in the interannual variability are also small. 
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Figure 4.7.5: a-b) Minimum point-wise correlation between the three different SST observational 
datasets considered, respectively for the raw and linearly detrended annual means. c-d, e-f) The same 
as in a-b but for the datasets of sea surface height anomaly, and the total cloud cover. 

 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.8 Use LST products to develop and test simple models relating the 
LST versus air temperature (near surface) difference to vegetation 
moisture stress 

 

Lead partner: Met Office 

Authors: Rob King, Deborah Hemming 

 

Aim 

The aims of this research are to: 1) use the differences between LST and Temperature (near 
surface) to assess spatial and temporal variations in vegetation moisture stress across biomes. 
SM will also be used to examine the vegetation moisture stress.  The biomes will be 
characterised by AGBiomass and LC. 2) Understand relationships between LST and 
Temperature in the context of vegetation carbon exchanges across biomes and regions. 3) 
Assess the potential for using LST versus Temperature relationships as a large-scale monitor of 
vegetation moisture stress. It will address the following scientific questions: 

1. Can LST versus Temperature relationships be used to monitor large-scale vegetation 
moisture stress across different biomes and regions? 

2. What quality information can be learned from the ancillary ECVs used in this study? 

 

Key features 

1. Understand how LST to (near surface) air temperature differences vary across biomes 
and to different biomes. 

2. Understand how vegetation moisture stress effects LST to (near surface) air temperature 
differences to give indicators of moisture stress for particular biomes. 

Summary of Work and Results 

We have carried out some preliminary investigations and familiarisation with the soil moisture 
CCI data that is currently available and have started looking at the beta CCI LST data that has 
just become available. 
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Publications 

None so far, but the interest in the results leading to a journal or conference publication will be 
described in the next version of this report. 

 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the LST,  
AGB, SM and LC CCI ECV projects at the quarterly CSWG meetings and the Integration 
meetings. Contact outside that has been with LST who have already produced a beta dataset, 
and AGB (by email) to discuss data specifications and access, and the wider question of 
coordinated work on using the AGB data in a land surface climate model. Interactions with SM 
and LC have been to learn about the continuation datasets they will be producing in CCI+. 
Interactions with the LUMIP and Decadal Climate Prediction projects are planned for 2020. 

 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will 
be completed in the next version of this report. 

 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.9 Use CCI+ products and simple models developed in WP4.8 to 
evaluate performance of modelled LST versus air temperature, 
using multiple up-to-date land surface and Earth System models 

 

Lead partner: Met Office 

Authors: Rob King, Deborah Hemming 

 

Aim 

The aim of this research is to evaluate how well the observed relationships between LST and 
Temperature across different vegetation types and moisture regimes are captured by the JULES 
land surface model, UKESM1 and other CMIP5 and 6 (where available) Earth System Models. 
It will address the following scientific question: 

1. Can models capture the LST versus Temperature (near surface) relationships observed 
with satellite products across different vegetation types and moisture regimes? 

 

Key features 

1. Identify biome specific relationships between LST and near-surface air temperatures in 
LST CCI data 

2. Evaluate the models (listed above) in their LST and air temperature, to understand how 
they capture the relationship seen in the CCI data. This evaluation will cover different 
biomes to capture both differing vegetation types (land cover) and (soil) moisture 
regimes. 
 

Summary of Work and Results 

We have some insights from a preliminary investigation about the behaviour of JULES in 
particular biomes when skin temperatures (LST) are compared with the driving air 
temperatures.  
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Publications 

None so far, but a paper on the evaluation of modelled seasonality in vegetation is planned. 

 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the LST,  
AGB, SM and LC CCI ECV projects at the quarterly CSWG meetings and the Integration 
meetings. Contact outside that has been with LST who have already produced a beta dataset, 
and AGB (by email) to discuss data specifications and access, and the wider question of 
coordinated work on using the AGB data in a land surface climate model. Interactions with SM 
and LC have been to learn about the continuation datasets they will be producing in CCI+. 
Interactions with the LS3MIP, C4MIP, LUMIP and Decadal Climate Prediction projects are 
planned for 2020. 

 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will 
be completed in the next version of this report. 

 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.10 Comparison of CCI products for studying vegetation variations 
with other satellite products and land surface models 

 

Lead partner: Met Office 

Authors: Rob King, Deborah Hemming 

 

Aim 

The aims of this research are to: 1) Compare the seasonal timing and magnitude of vegetation-
relevant CCI products with other satellite products (including MODIS) and vegetation variables 
from existing historic model runs (of JULES, UKESM1, CMIP5/6). 2) Identify significant 
differences in the timing, location and vegetation types between CCI products and other satellite 
and model data. 3) Suggest key areas for model development to improve vegetation seasonality. 
4) Contribute results to a multi-model evaluation conducted in the CRESCENDO project. It 
will address the following scientific question: 

1. Can the large-scale CCI ECV satellite products be used to improve representation of 
sensitivities and thresholds between vegetation productivity (and other carbon cycle 
processes) and climate in land surface/Earth System Models? 

Key features  

 Evaluate modelled vegetation phenology (seasonal timing and magnitude) for JULES 
UKESM1 and CMIP5/6 historic runs using CCI (and other e.g., MODIS) vegetation 
products. 

 Contribute to multi-model ensemble evaluation for CRESCENDO project. 

Summary of Work and Results 

Preliminary evaluation of vegetation phenology peak of season modelled with CRESCENDO 
project models has been conducted using Leaf Area Index monthly products from MODIS and 
Copernicus Global Land Surface (GLS). Results show significant differences (up to 5) in the 
magnitude, and variations (of 1-3 months) in the timing of peak LAI between models. Models 
showed generally later peaks in LAI than the MODIS and GLS satellite products, which were 
consistent with each other. Other vegetation variables, including Biomass CCI, will be used to 
assess the magnitude and timing of peak productivity. Initial contact has been made with the 
Biomass CCI project lead, and a review of the Biomass CCI reports - Product Validation Plan 
and Uncertainty Budget, was submitted as part of other CMUG work. 
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Publications 

None so far, but a paper on the evaluation of modelled seasonality in vegetation is planned. 

 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the LST,  
AGB, SM and LC CCI ECV projects at the quarterly CSWG meetings and the Integration 
meetings. Contact outside that has been with LST who have already produced a beta dataset, 
and AGB (by email) to discuss data specifications and access, and the wider question of 
coordinated work on using the AGB data in a land surface climate model. Interactions with SM 
and LC have been to learn about the continuation datasets they will be producing in CCI+. 
Interactions with the LS3MIP, C4MIP, LUMIP and Decadal Climate Prediction projects are 
planned for 2020. 

 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will 
be completed in the next version of this report. 

 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.11 Assess the land-surface interaction related biases in AMIP 
simulations with CCI and other products 

 

Lead partner: IPSL 

Author: Frederique Cheruy 

 

Aim 

The aim of this research is to identify biases in the surface state and surface fluxes in AMIP 
simulations and understanding the origin of these biases in present day simulations 
(temperature, albedo, fluxes). It will address the following scientific question: What is the 
potential for exploring multiple satellite derived products to try to relate existing and identified 
biases (surface state and surface fluxes) to missing or incorrectly represented processes, thus 
offering solutions for model improvement by revisiting the process representation? 

Summary of Work and Results 
 
Role of the input soil textures of the LSM in the regional SM distribution of IPSL-CM 

The soil-moisture atmosphere couplings have been assessed for the IPSL-CM in AMIP 
configuration. An evaluation of the snow cover has been done with alternative products since 
the snow product was not yet available. The new versions of atmospheric and soil physics of 
the IPSL model implemented for CMIP6 leads to an image of the interactions between soil 
moisture and atmosphere that is more consistent with observations. This is particularly true in 
“hot-spot” regions of strong land-atmosphere coupling and for the driest soils where 
evaporation and precipitation distributions are closer to those of the observations for the driest 
soil moisture quartile. Spurious multi-modality in the regional distribution of the superficial 
soil moisture has been documented over some regions, and is probably related to contrasted 
field capacities and wilting points as a function of soil texture in our land surface model. This 
multi-modality is not present in the CCI product, which needs to be investigated by comparing 
SSM spatio-temporal variability in the three ESA CCI SM products: active (in % saturation), 
passive (in m3/m3) and combined (which imposes the dynamic range of the GLDAS-Noah 
SSM product, making this product unfit for bias and RMSD analyses, cf. Dorigo et al, 2017). 
The effect of input soil texture on the distributions of SSM in the IPSL model can also be 
explored owing to a set of idealized simulations with uniform soil texture over land, recently 
performed for the Soil Parameter MIP international project (Tafasca et al., 2020) 
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Figure 4.11.1: Histograms of the soil moisture for the Western Europe as simulated by coupled 
atmosphere land-surface components of IPSL-CM (left) and retrieved from the CCI product 
(right).   

While in the real world a large variation in texture is present in each model grid box, the soil 
hydrology module of IPSL-CM works with the predominant soil texture in each grid box. Only 
the predominant soil texture is selected for the description of the water fluxes by the soil 
hydrology module; the tri-modal structure of the histogram reveals the signature of the three 
different textures present in the Western Europe region according to the USGS-produced soil 
property maps. 

 

 

 

 

 

 

 

 

Figure 4.11.2: 

The multimodality has been explored and it has been shown that with continuous soil transfer 
functions (which no longer define the soil properties with a value per texture, but with a real 
function depending on different parameters, in our case texture and organic matter), no longer 
has the multi-modality is no longer present in the PDF of the SSM 

 

Realism of the Heat waves and possible biases in the climate models 

The realisms of heatwaves as simulated in the AMIP-CMIP6 database has been investigated 
thanks to various sets of observation-based datasets (table 4.11.1). The multimodel analysis 
done on a regional basis (Figure 4.11.3) shows that several models exhibit a drier bias during 
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the heatwave with respect to no heatwave days in summer. Both CCI and SMOS show this dry 
bias. Similarly, heat wave days are associated with an evaporation deficit and a too dry surface 
layer (relative humidity). These different biases are consistent with an overestimation of the 
maximum temperature of heat waves at the regional scale (Figure 4.11.4)  

Dataset     Variable  Period 

Daily data (HadGHCND)    T2max/T2min  1979-2014 

Berkeley Earth Surface Temperatures (BEST) T2max/T2min  1979-2014 

ESA CCI SSM COMBINED Product (fv04.5) SM   1979-2014 

GLEAM, v3.5a     E/SM   1980-2014 

Soil Moisture and Ocean Salinity (SMOS)  SM   2010-2014 

ERA5       T2min/T2max/RH 1979-2014 

Table 1: dataset used for the analysis of the realism of the eatwaves in the AMIP- database 

Figure 4.11.3: Regions used for the heatwave analysis. The regions are based on the Köppen 
climate classification but only regions were the daily air temperature is correctly sampled are 
considered. 
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Figure 4.11.4: Bias difference between HW days and not HW days in  summer ([Model_HW-
OBS_HW]-[Model_NotHW-OBS_NotHW]) during 1980-2014 for T2max/T2min (C), with 
respect to HadGHCND observation), SM (kg/m2, with repect to SM of ESA_CCI), E (mm/day, 
with respect tto GEAM) and RH (%, with respect to RH of ERA5) for the selected regions. The 
blue means that the differences are significant at 95% level of confidence, for  the 35 years long 
period. Each marker corresponds to one selected model. 

Publications 
None so far, but the interest in the results leading to a journal or conference publication will be 
described in the next version of this report. 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the LST 
and Snow CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. 
Contact outside that has been with LST who have already produced a beta dataset. Interactions 
with the LS3MIP, SPMIP, AMIP, HighResMIP and SnowMIP projects are planned for 2021. 

Consistency between data products 

The comparison of the CCI product to the SMOS product (Figure 4.11.5) shows a moist bias of 
the order of 0.1 m3/m3 which corresponds to a bias of the order of 10 kg/m2 in the upper 10 
cm of soil.  
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Figure 4.11.5: Volumetric Soil Moisture difference (SM_CCI – SM_SMOS, unit: 100*m3/m3) 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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