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1. Introduction

This document presents the Product Validation and Algorithm Selection Report (PVASR) for
the Sea State Climate Change Initiative (SS_cci), deliverable 2.1 of the project.

The SS_cci project is part of the ESA Climate Change Initiative, and aims to identify,
produce and validate a sea state essential climate variable (ECV). Requirements for sea
state have been expressed formally by GCOS only for a single variable: the significant wave
height (SWH). SWH will therefore be the key parameter on which the evaluation of the
algorithms will be based.

In order to identify the best performing algorithm or combination of algorithms, the SS_cci
project held an open Round Robin (RR): an algorithm intercomparison exercise following the
protocol reported in this document, which summarises the agreement found during the first
months of the project within the Consortium. By maximising the number of users
participating in the Round Robin exercise, ESA expected to identify the best algorithms for a
future operational system. The chosen algorithm(s) were then to be implemented in an
end-to-end system to generate the SS_cci data records.

The SS_cci project aims at providing SWH estimations from two different classes of sensors:
Satellite Radar Altimeters (RA) and Synthetic Aperture Radars (SAR). Given the very
different nature of these measurements, two different Round Robin exercises were planned.
Routines and techniques to evaluate algorithms for RA and SAR were programmed by
different teams and are described completely separated from each other in this document.

Concerning RA, the participation to the Round Robin was publicly advertised during the
Ocean Surface Topography Science Team (OSTST) Meeting and the “25 Years of Progress
in Satellite Altimetry” Conference in September 2018. Personal invitations were sent by
email to the following scientists, authors and co-authors of recent publications focused on
the retrieval of SWH from Satellite Altimetry: F.Birol (LEGOS), C. Buchhaupt (TU Darmstadt),
L. Fenoglio-Marc (University of Bonn), S. Dinardo (EUMETSAT), W.H. Smith (NOAA), F.
Peng and X. Deng (University of Newcastle), R. Roscher (University of Bonn), Xi-Feng Wang
(ESST, Kyushu University), N. Kurtz (NASA), D. Sandwell (NOAA). Preliminary expressions
of interest in participating were obtained from S. Dinardo (participation to Altimetry DD
Round Robin), D. Sandwell (participation to Altimetry LRM Round Robin) and F. Peng
(University of Newcastle).

Internal participation to the Altimetry Round Robin was guaranteed by TUM (participating to
both LRM and DD Round Robin), CLS (participating to both) and IsardSAT (participating to
DD Round Robin). The final list of RA algorithms evaluated is found in Section 4 of this
report.

Internal participation to the SAR Round Robin is guaranteed by ODL, Ifremer and DLR. A
personal invitation was sent by email to Xiaoming Li (Chinese Academy of Sciences).
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1.1 Overview of document

This document is organised into the following sections:

Section 1: this section introduces the main purpose of the document and sets the general
rules of the Round Robin experiment

Section 2: this section describes the input and output dataset for Satellite Altimetry and
Synthetic Aperture Radar and the external dataset required to produce the statistics

Section 3: this section describes the procedures on which the Round Robin is based

Section 4: this section presents the results of the Round Robin for each participant. It
includes the results of the Satellite Altimetry Round Robin in this version  in this first version

Section 5: this section describes the decision process followed to select the winning
algorithms

Section 6: this section summarises the main findings

1.2 General Principles of the Round Robin for Altimetry

In order to make the Round Robin as transparent as possible, a set of preliminary rules and
requirements for participation are defined.

1) The Round Robin exercise is a transparent process. TUM and PML will, under request,
share the code used for the Round Robin.

2) The criteria of the Round Robin must be quantitative.

3) The rules of the Round Robin have been approved collegially by the Consortium.

4) TUM, as leader of the Altimetry-Algorithm Development group, and the Science Leader of
the SS CCI Project have the final word in clarifying disputes on methodology.

5) Proposed changes to the Round Robin methodology after the start of the exercise (KO+9)
will not be considered.

6) The Round Robin assesses the quality of the Ku-band significant wave height at 20-Hz.
The providers are invited to avoid bad practice such as: forcing to absolute zero the SWH,
using external data to force retrievals at NaN. The participants shall provide a 1-0 flag to
assess bad retrievals and shall describe the criteria used for it. If the algorithm allows, the
authors shall provide the estimations of sigma0. Finally, the participants must suggest the
best strategy to average from 20-Hz to 1-Hz data, since the final product will be distributed
as 1-Hz measurements. The Round Robin involves both internal consistency checks
(outliers, along-track variability…) and validation with external data (buoys and models), as
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described in this document.

1.2.1 Definitions

Here we report the definition of terminology used in the following sections of the document.

Closest point: “closest point” is defined as the median SWH of the 51 high-frequency (“51
20-Hz”) closest points to the buoy, including NaNs. Unrealistic estimations, i.e. outside the
interval [-0.25 m, 25 m], are excluded.

Distance to Coast (DtC): “Distance to coast” is the distance of each 20-Hz point from the
nearest coast, computed using the “Distance to Nearest Coastline: 0.01-Degree Grid:
Ocean” available from http://pacioos.org. In this dataset, “Distances were computed with
GMT using its intermediate-resolution coastline and then gridded globally at a spatial
resolution of 0.04 degrees. Bilinear interpolation was then applied to increase the spatial
resolution to 0.01 degrees.”

Outliers: outliers are considered points for which SWH=NaN, which lie outside [-0.25m, 25m]
and/or which are more than 3*MAD away from the median of the closest 20 points.

Noise: noise is defined as the standard deviation of the 20-Hz SWH within a 1-Hz distance.
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2. Description of data

2.1 Altimeter (LRM and DD)

2.2.1 Input Data

The Round Robin evaluation focuses on a subset of Jason-3 and Sentinel-3A mission data.

The following table provides the list of input products collected and made available to
round-robin participants, for both missions:

Mission Product Version

Jason-3 SGDR version D

Sentinel-3A SR_1_SRA_BS_ Operational NTC
(TBC: unless 2018 reprocessing can be provided
by Eumetsat)

SR_1_SRA_A_ Operational NTC
(TBC: unless 2018 reprocessing can be provided
by Eumetsat)

For the comparisons with models and in-situ data, participants needed to process 2 full
years of data along a small number of selected tracks passing close to the in-situ data. The
analysis covers the period July 2016-June 2018 to cover a balanced mix of winter/summer
conditions.

The input data from Jason-3 and Sentinel-3A were collected by Ifremer repository only, to
avoid later discrepancies if different sources are used.

The following tracks for Jason-3 were selected:

Pass Area Potentially collocatable in-situ
observations

026 Gulf of Mexico 42039, 42003, 42097, 42057

039 South Pacific - Canadian East Coast -
Iceland

32012 44141, 44139, 41046,
(42058), (42065), (TFGRV),
(TFKGR)
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045 New Zealand, Hawaii, Canadian West
Coast

(NZban), 51209, 51002, 51100,
51000, 46004, 46208, 46183,
(45150), (45141)

063 North Atlantic to Norwegian Sea 41040, (41066), FAWV3, LF3N,
LF5I, FL7I, LF3N

065 US East Coast Offshore - Caribbean
Sea

44174, (44024), 44008, 44004,
41001, 41002, 42057

070 English Channel - Celtic Sea 62105, 62107, 62023, 62094 (the
Porthleven buoy could be added)

094 North Sea to Iceland 62129, 62130, 62134, LF4C,
LF5C, 62102, 62161, 64046,
FAWV3, FSWV2, TFBLK

113 West Ireland, Norwegian Sea 62095, 62105, 62106, 62048,
(64046), 62302, 63118, 64041,
63115, 62169, 63117 63101

120 North Sea EURO, 62142, 63058, 62144,
62289, 62142, 62148, 62127,
62131, 62165, 62293, 64045

127 Korea 21229, 22105, 22106, 22190,
(22104), (22188)

137 Canary Islands to Finland (Portuguese
and Finnish data will need to be
acquired)

(13131), FARO, 62192, 62025,
62001, (62074), 62288, 62044,
62286, 25077, FIMR3

163 North Sea - Irish Sea - Brazil 62146, 62122, 62119, 62094,
31229, 31231, 31375

172 Western Europe 62095, 62081, 62029, 62163,
(62001), 62025, 61417

206 US West coast offshore 46076, 46085, 46184, 46004,
(46036), (46006), 46022, 46212,
46255, 46219, (46047)

243 US East Coast - Iceland 41010, 41025, 41062, 44087,
44066, 44097, 44090, 44020,
44018, 44005, (TFBLK), TFKGR

244 Norwegian Sea - Arabian Sea LF3N, LF5I, LF7I, 23456, 23451,
23494, 23453
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The following tracks for Sentinel-3A have been selected:

Pass Area Potentially collocatable in-situ
observations

011 South Pacific to Gulf of Alaska 46006, 46085

074 Norwegian Sea - Spain LFB2, (62046), 6201, 62X55,
62X54, 62163, 62083, (62084)

084 Antarctica to Western Canada 46006, 46036, (46208), 46183

099 Hawaii to Bering Sea 51001, 51003, 51101, 46073,
(46035)

115 Portugal to Iceland 62085, 62191, 62084, 62082,
62029, 62081, 62095, TFSRT,
TFSTD

142 Gulf of Alaska to Hawaii 51206, 51100, 51000, 56246,
46085

181 Southern California offshore 46047, 46219, 46255, 46249,
(46053), (46087)

207 Caribbean Sea - Gulf of Mexico 42056, 42003, (42039), 41012

226 West of Canada to Antarctica 46206, (46002), 46059

250 US East coast offshore to Caribbean
Sea

44017, 44066, (44087), (41001),
41002

285 Mediterranean to Norwegian Sea 61002, (61431), 64046, FAWV1,
FAWV3, FAWV4

319 Caribbean to Canada 41300, 41044, (44150), 44024

355 Hawaii -Bering Sea 51000, 51100, 51004

371 West Scotland to the Mediterranean
Sea

62048, 62047, 62091, (62301),
Pembrokeshire buoy, 62078,
61281

393 India 23091, 23093, 23455

463 Caribbean to Florida 42058, 41010, 41004

474 Norwegian Sea - South Atlantic (FAWV2), (FAWV3), 64045,
62105, 62095
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478 US East Coast Offshore - South
Pacific

44032, 44005, 44018, (44020),
41001, (41002), 32012

491 US East Coast 44032, 44005, 44018, (44020),
41001, (41002), 32012

493 South Pacific 32012

508 Gulf of Mexico - Lake Superior 42055, 42002, (45004)

513 Mediterranean Sea -North Sea 61021, 62142, 63058, 62144,
62148, 63059, 63111, 62302,
63118, 64041

514 New Zealand to Alaska 46075, NzBan

530 Portugal to Norwegian Sea 62200, FARO, 62025, 62001,
62293, 62162,62118, 62155,
62168, 62161, 62130, 62128,
LF8F, 63057, LF4H, LF6T, LF5B,
LF5E, LF5A, LF7I, LF5I, LF3N,
LF5T

592 Labrador Sea to South eastern Pacific 45138, (44005), (44037), 44008,
41001

646 Iceland - Brazil TFSRT, TFGRS, 31375, 31053

656 Gulf of Alaska to Hawaii 51209, (51003), 51001, 51101,
(46066), 46078, 46264, 46080,
46076

695 US West Coast Offshore 46083, 46004, 46036, (46005),
46002, 46059

703 Korea 22189, 22106, 22190, 22105

741 North Sea - Mediterranean Sea 52134, 62116, 62104, 62122,
62119, 62120, 62154, 62123,
61001

2.2.2 Output Data

The output data will have to be given in NetCDF format, with individual files for each cycle
and for each track within it. The following fields are necessary to participate in the Round
Robin: time, latitude, longitude, Significant Wave Height, Quality Flag. All fields should be
provided at a 20-Hz posting rate. Estimations of Backscatter coefficient and Range are
encouraged, but not mandatory. The time record is to be exactly as provided on the original
waveform product, as this may be used in collocating the coverage of different algorithms.
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The algorithms that take part in the Round Robin are described in the Algorithm Theoretical
Basis Document (ATBD). External participants were also requested to provide an analogous
documentation.

2.2 Synthetic Aperture Radar

2.2.1 Input Data

The Round Robin evaluation focuses on a subset of Sentinel-1 Wave Mode data. For the
comparisons with models and in-situ data, participants needed to process 1 full year of data.
The analysis covers the period of January 2019 to December 2019 to provide a balanced
mix of winter/summer conditions.

The following list contains 60 relative orbits numbers with regular coverage of NDBC buoys
within ~50km collocation distance:

Orbits Pacific:

relative
orbit
number

type Sentinel-1
A/B

collocated
NDBC
buoy,
S1A/S1B

wv1
wv2

collocation,
km
(A/B)

1 001 descending - B 46070 B 2 57

2 005 ascending A B 46005 A/B 1 52/9

3 006 ascending - B 46066 B 2 50

4 008 ascending - B 51209 B 2 29

5 014 descending A B 51004 A
46085 B

1
1

34
47

6 020 ascending A B 46085 A
46006 B

2
2

20
28

7 028 descending A B 46005 A/B 1 21/23

8 029 descending - B 46078 B
46066 B

1
2

22
49

9 030 descending - B 46071 B 2 4

10 035 ascending A B 46078 A/B 1 26/41

11 043 descending A B 46184 A/B 1 36/29

12 049 ascending A B 46004 A 2 6/47

13 050 ascending - B 46075 B 2 36
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14 051 ascending A B 46075 A/B 2 3/3

15 058 descending - B 46001 B 1 20

16 059 descending A B 46073 B
51209 A

1
1

47
52

17 064 ascending - B 46001 B
46080 B

2
2

27
57

18 066 ascending A B 52201 A/B 1 54/54

19 067 descending A - 52211 A 2 38

20 078 ascending A B 46005 A/B
46036 A/B
46208 B
43010 B
46002 A/B

2
1
2
1
2

13/14
0/52
30
52
35/39

21 087 descending A - 46246 A 1 45

22 088 descending B 46072 B 2 44

23 093 ascending A B 46001 A
46246 B

1
1

28
30

24 101 descending A B 46004 A/B 2 39/39

25 102 descending - B 46006 B 1 20

26 103 descending A B 46071 A/B 1 37/37

27 110 ascending A B 51209 A/B 1 5/46

28 112 descending - B 41040 B 2 57

29 116 descending - B 46085 B 2 9

30 122 ascending A B 46184 A/B
46006 B
46085 B

2
1
1

38/23
56
19

31 131 descending - B 51208 B
46078 B

1
2

35
25

32 132 descending - B 52201 B 2 16

33 137 ascending - B 46078 B 1 57
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34 138 ascending - B 46035 B 1 40

35 139 ascending A B 52201 A/B 2 17/24

140 ascending - B 52211 B 2 57

36 147 descending - B 46070 B 1 46

37 151 ascending - B 46036 B
46205 B

2
2

40
51

38 153 ascending - B 46070 B 2 18

39 160 descending - B 46001 B 1 33

40 161 descending A B 46072 B
51209 A/B

1
2

37
50/25

41 174 descending A - 46036 A 1 21

Orbits Atlantic:

relative
orbit
number

type Sentinel-1
A/B

collocated
NDBC
buoy,
S1A/S1B

wv1
wv2

collocation,
km
(A/B)

42 002 ascending - B 44139 B 1 40

43 018 ascending - B 44011 B
44150 B

1
2

35
43

44 025 descending A B 41049 A
41052 B
41049 B
41056 B

2
2
2
2

27
35
57
20

45 031 ascending A B 41041 A/B 1 39/39

46 033 ascending - B 44095 B
41001 B
41047 B
44099 B
41025 B

2
1
1
2
2

32
39
32
33
54

47 040 descending - B 41047 B 1 36

48 047 ascending - B 44137 B 1 27
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49 054 descending - B 41044 B 1 30

50 062 ascending - B 44008 B
41048 B
42085 B

2
1
2

49
29
23 (near land)

51 068 descending - B 41041 B 2 44

52 076 ascending - B 44139 B 2 40

53 091 ascending A B 44011 A/B
41049 A/B

2
2

41/-
42/21

54 104 ascending A B 41041 A/B 2 47/39

55 113 descending - B 41002 B
41001 B
44066 B
44005 B

2
1
2
1

50
28
35
45

56 120 ascending - B 44137 B 2 22

57 135 ascending - B 41046 B
41047 B
41001 B
41115 B

2
1
1
2

0
46
50
10 (near land)

58 148 ascending A - 3100053 A 2 40
*EMONDNET

59 156 descending A B 41044 A/B 2 30/30

60 164 ascending - B 41052 B 1 45

As reference data two separate datasets are used:
1. In-situ measurements (ground truth) from buoys
2. Model measurements (ground truth) from MFWAM distributed by CMEMS

For some orbits buoy collocation from both Sentinel‑1 platforms A and B are possible. This
means from the list of 60 relative orbit numbers 87 WV products are collocatable with buoys.
For buoy validation about 1.100 vignettes for each wv1 and wv2 were expected, resulting in
~2.200 data samples in the buoy validation dataset. For model validation only vignettes
within -60°<latitude<60° are considered to avoid ice coverage. For all 87 WV products about
100.000 vignettes for each wv1 and wv2 were expected, resulting in ~200.000 data samples
in the model validation dataset. Each reference data sample must be temporally interpolated
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to the image acquisition time between the two neighboring measurements not further apart
than six hours.

2.2.2 Output Data

The output data are given in NetCDF format, with individual files for each orbit. The following
fields were necessary to participate in the Round Robin: time, latitude, longitude, Significant
Wave Height, Quality Flag. Estimations of Significant Wave Length and Significant Wave
Direction was encouraged, but not mandatory. The time record was to be exactly as
provided on the original waveform product, to co-locate the coverage of different algorithms.
The algorithms that take part in the Round Robin are fully described in the Algorithm
Theoretical Basis Document (ATBD). External participants were requested to provide an
analogous documentation.

2.3 Round Robin datasets

2.3.1 Altimeter (LRM and DD)

In-situ dataset
As part of its wave forecast verification activities within the Joint Commission for
Oceanography and Marine Meteorology, ECMWF gathers wave observations. Most of the
data are obtained from the data received via the Global Telecommunication System (GTS),
where atmospheric and oceanographic data are disseminated to weather forecasting
institutions. A few data sets are also supplied directly to ECMWF. Most data are from a wide
range of moored buoys, except for data from the North Sea, the Norwegian Sea and the Gulf
of Mexico. A basic quality control procedure is performed following Bidlot et al. (2002) and
the resulting hourly time series have been made available to the project.

Wave Model dataset
A long global wave model hindcast has been produced using the latest version of ECMWF
wave model (CY46R1, ECMWF 2019). The model spatial resolution is 0.125x0.125 degrees
and the output is hourly, making it ideal to be collocated with altimeter data passes. The
necessary hourly wind forcing and sea ice cover information come from ECMWF latest
reanalysis (ERA5). The hindcast covers the period from 1979 to present. These data are
preferred to using directly ERA5 output instead, because, ERA5 wave model data are on a
coarser resolution (0.36 degree), are based on an older version of the wave model code and
most of all, ERA5 has used altimeter data from (ERS-1, ERS-2, ENVISAT, Jason-2,
Jason-2), rendering it not independent. The latest hindcast has been found to be even better
than ERA5 (Jean Bidlot personal communication). Over the course of 2019, it will become a
product made available alongside ERA5 data.

2.3.2 Synthetic Aperture Radar

In-situ measurements (ground truth) from buoys
The 50 km collocation distance defines the distance from the nearest border or corner of a
20km×20km S1-WV vignette to the buoy location, this means ~60 km distance from vignette
centre.

For in-situ measurements 54 buoys providing wave heights were selected:
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·         49 buoys from NOAA buoy stations network NDBC (National Data Buoy Center)
·         8 buoys from ECCC (Environment and Climate Change Canada)
·         1 buoy from EMODnet

The stationary NOAA buoys typically provide hourly measurements and the ECCC buoys
store the data more unsystematically. For validation the data of each buoy are temporally
interpolated. The data with a measurement time gap over 6h were excluded.

The following table lists all buoys with their corresponding geographic coordinate:

Name Lat Lon Data source Group

43010 10.051 -125.032 NDBC Group-1
Alaska, Canada

46001 56.304 -147.920 NDBC

46002 42.612 -130.537 NDBC

46004 50.930 -136.100 ECCC

46005 46.140 -131.070 NDBC

46006 40.782 -137.397 NDBC

46035 57.026 -177.738 NDBC

46036 48.350 -133.940 ECCC

46066 52.785 -155.047 NDBC

46070 55.082 175.153 NDBC

46071 51.125 179.012 NDBC

46072 51.672 -172.088 NDBC

46073 55.031 -172.001 NDBC

46075 53.983 -162.041 NDBC

46078 55.556 -152.582 NDBC

46080 57.947 -150.042 NDBC

46085 55.868 -142.492 NDBC

46184 53.910 -138.850 ECCC

46205 54.190 -134.320 ECCC

46208 52.520 -132.690 ECCC

46246 50.033 -145.200 NDBC
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51209 -14.264 170.493 NDBC Group-2
South-West
Pacific52201 7.083 171.392 NDBC

52211 15.268 145.662 NDBC

51001 24.453 -162.000 NDBC Group-3
Pacific Hawaii

51002 17.037 -157.696 NDBC

51004 17.604 -152.364 NDBC

51101 24.361 -162.075 NDBC

51205 21.018 -156.425 NDBC

51202 17.037 -157.696 NDBC

51208 22.285 -159.574 NDBC

41001 34.502 -72.522 NDBC Group-3
North Atlantic,
Sargasso Sea41002 31.892 -74.930 NDBC

41025 35.006 -75.402 NDBC

41040 14.554 -53.045 NDBC

41041 14.441 -46.033 NDBC

41043 21.124 -64.830 NDBC

41044 21.582 -58.630 NDBC

41046 23.822 -68.384 NDBC

41047 27.514 -71.494 NDBC

41048 31.838 -69.585 NDBC

41049 27.490 -62.938 NDBC

44005 43.201 -69.128 NDBC

44008 40.504 -69.248 NDBC

44011 41.070 -66.588 NDBC

44014 36.606 -74.840 NDBC

44066 39.618 -72.644 NDBC

44095 35.750 -75.330 NDBC
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44099 36.914 -75.720 NDBC

44137 42.260 -62.000 ECCC

44139 44.240 -57.100 ECCC

44150 42.500 -64.020 ECCC

41052 18.249 -64.763 NDBC Group-4
North Atlantic,
Caribbean Sea41056 18.261 -65.464 NDBC

41115 18.376 -67.280 NDBC

42085 17.869 -66.532 NDBC

3100053 -23.478 -43.984 EMONDNET p

Model measurements (ground truth) from MFWAM distributed by CMEMS
For model “ground truth” MFWAM model data from CMEMS (COPERNICUS) with
spatial resolution of 1/12 degree will be used. The results are stored in 3h time
intervals and are therefore temporally interpolated.

http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=deta
ils&product_id=GLOBAL_ANALYSIS_FORECAST_WAV_001_027
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3. Round Robin procedures

3.1 Altimeter (LRM and DD)

Here we report the statistics chosen to evaluate the Round Robin. The evaluation of the
Round Robin is based on tables reporting the key statistics for each of the participants.
The statistics (unless differently specified) are reported separately for each of the following
categories:

GEOGRAPHICAL CATEGORIES
- Full Dataset: all data without any distinction
- Coastal Data: all data in which DtC < 20 Km, < 10 Km, < 5 Km
- Open Ocean Data: all data in which DtC > 20 Km

SEA STATE CATEGORIES
- Low Sea States: all data in which 0m<SWH<2m
- Average Sea States: all data in which 2m<SWH<5m
- High Sea States: all data in which SWH>5m
- Very High Sea States: all data in which SWH>10 m

3.1.1 Outlier Analysis

For detecting outliers, the following three criteria are defined:
● invalid: Data missing (already set to NaN) or quality flag set to ’bad’ (1).
● out_of_range: If a value is out of the expected range of [�0.25, 25] m. (Note noisy

estimations may sometimes return sub-zero values.)
● mad_factor: This criterion compares the value with its 20 closest neighbours (10

before and 10 after). It is implemented using median and median absolute deviation
(MAD), which are statistically robust measures. Data are discarded if they exceed
median plus 3 * 1.4826 * MAD, with median and MAD calculated on 20-point sliding
windows, and the factor 1.4826 converts the MAD to SD equivalent for a normal
distribution.

If one of the criteria is applicable, the individual measurement is considered to be an outlier.
The evaluated metrics are the total number of outliers and the number of outliers in the
coastal zone as a function of the dist2coast, considering bands of less than 20, 10, and 5 km
from the coast. This analysis is performed on the 20 Hz-data, and the total number of
outliers is given by the sum of the individual outlier types excluding potential overlapping
indices (one measurement might be marked by multiple types, e.g., mad_factor and
out_of_range). Furthermore, as an exception of the outlier analysis, there is no sea-ice flag
considered, when reading the netCDF files. The sea-ice flag would be considered as another
kind of quality flag, marking a measurement as invalid. The outlier analysis should be on
estimations of SWH in the ocean and do not take into account points on surfaces, for which
such estimation does not exist, such as land and sea-ice covered areas.
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3.1.2 High Frequency Noise Analysis

The noise is computed as the standard deviation of the 20-Hz SWH estimations within a
1-Hz block. For each category, the statistics is obtained by computing the median of all the
noise estimations.

Figure 1: Visual example of noise analysis for varying SWH performed on a test area with
Jason-3 data and an algorithm under development for the SS_cci project.

3.1.3 Comparison with in-situ Data

Data from wave buoys at the time of each satellite pass are compared with the satellite
observations at the closest point, as defined in section 1.3. For a meaningful altimeter
average we compute the mean of the observation at the buoy location and of 25 points
either side of this. This implies the mean is calculated over 51 points (~17 km along track)
and although some of these points will be over land they should have no impact because all
land or ‘bad’ data are excluded. Statistics are separated according to the distance from
coast and sea state ( < 2m ; 2-5m ; > 5m ).. The following statistics are calculated, using all
buoys and all passes:

Number of points used in comparison
Slope and Intercept of best fit line
Median bias
Standard Deviation of Differences
Correlation

Of these the latter three were the ones used in intercomparing the performance o fthe
various candidate algorithms (see also Schlembach et al., 2020).

3.1.4 Comparison with Model Data

Model grid points and altimetry will be coupled by considering the median of the SWH 20-Hz
measurements from altimetry within the grid point. The following statistics are provided:
- Correlation
- Standard Deviation of the difference between SWH from altimetry and SWH from model
- Slope of the linear fit (regression line of SWH from altimetry -vs- SWH from model scatter
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plot)
- Median bias between SWH from altimetry and SWH from model.

Figure 2: A density plot in a test area illustrating key statistics in the comparison between
Jason-3 data and the Météo-France global wave model (MFWAM) available from the
Copernicus Marine Service.

3.1.5 Representation of Scales of Variability

Spectra were calculated for SWH in the same way they are used for Sea Surface Height
(SSH) to compare the performance of different retrackers. We used FFT applied to the 20
Hz SWH data, using segments of at least 1024 points (~330 km), with Hann weighting
applied. Provided the retracker algorithms treat each waveform independently, and there is
no along-track smoothing applied, the spectra at very short scales should be white noise,
with a plateau level consistent with the value for "high-frequency noise" (section 3.1.2). At
large scales, the spectra should be dominated by the real geographical variations in SWH,
and providing all estimators are unbiased their spectra will converge.

The main assessment considered in this section is the nature of the spectra in the ranges
25-50 km and 50-100km, as these are the scales requested by GCOS, and are also the
scales of models that might assimilate altimeter SWH data. Spectra were assessed at these
scales for all retrackers, with the results partitioned according to median wave height, in
order to ascertain whether there are problems associated with differently shaped waveforms
(i.e. leading edge slope).

3.2 Synthetic Aperture Radar

The statistics chosen to evaluate the SAR Round Robin are similar to the Altimetry Round
Robin. As the amount of data samples with sea state above 12m is expected low, in contrast
to the Altimeter Round Robin high and very high sea state is comprised into one category.
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Further, a category for rough sea state has been added. This means the statistics for the
SAR Round Robin are categorized as follows:

GEOGRAPHICAL CATEGORIES

- Full Dataset: all data without any distinction, as the amount of ground-truth data
samples compared to altimetry is less due to non continuous acquisitions.

-       -60°<LAT<60° to avoid ice coverage

SEA STATE CATEGORIES

-       Low Sea States: all data in which 0m<SWH<1.5m

-       Moderate Sea States: all data in which 1.5m<SWH<3m

-       Rough Sea State: all data in which 3m<SWH<6m

-       High and Very High Sea States: all data in which SWH>6m

NB: In the first Round Robin for Synthetic aperture radar, only significant wave height is
evaluated since only one algorithm is providing wave period.

3.2.1 Outlier Analysis

For the definition of Outliers please see the previous sections 1.3. The percentage of
Outliers is defined for each of the listed categories. For each sea state bin, the outliers are
the values with

ABS (SWHS1 – SWHground-truth) > 3*RMSEbin

As the different RMSEbin leads to different number of outliers, in order to get the comparable
results, RMSEbin for outliers’ definition was taken from Stopa results (see Tab.X2).

3.2.3 Comparison with In-situ Data

The collocation of in-situ buoy data with SAR measurements is only valid, when the distance
between the respective buoys and the SAR subscene are at most 50 km apart from each
other. The in-situ buoy data and SAR are coupled by comparing the median of the SWH and
parameters measurements from SAR with the buoy’s SWH. The Statistics are divided
according to the categories previously defined. The following statistics are provided:

●     Root Mean Square Error (RMSE)

● No-sea-state percentage, i.e. proportion of bad values of SAR vignettes for
which no sea state estimation is possible

● Outliers percentage: proportion of SAR derived parameters that differ from in-situ
data by more than 3 times the local RMSE for each sea state domain.

●     Median bias between SWH from SAR and from buoy data.
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3.2.4 Comparison with Model Data

The same MFWAM model distributed by CMEMS used for altimetry dataset, is used for SAR
comparison. Model grid points and SAR are coupled by considering the median of the SWH
parameter measurements from SAR within the grid point. The Statistics are divided
according to the categories previously defined. The following statistics are provided:

●     Root Mean Square Error (RMSE)

● No-sea-state percentage, i.e. proportion of bad values of SAR vignettes for
which no sea state estimation is possible

● Outliers percentage: proportion of SAR derived parameters that differ from
model data by more than 3 times the local RMSE for each sea state domain.

●     Median bias between SWH from SAR and from model.

4. Round Robin results
Running the validation with retrackval produces a large set of figures that can not all be
presented and discussed in this report. Instead, a small subset of the figures will be taken
into account in the following sections, in order to provide a comprehensive analysis of the
results.

The following table provides the list of all the algorithms evaluated in the exercise. For a
clarification of the “denoising”, see section 4.2 of this report. Note that the algorithms from
the following authors are internal to the project and described in the ATDB document: TUM,
PML/TUM, CLS/CNES and isardSAT.
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4.1 Outlier Analysis

Figure 3 shows the number of total outliers of J3 vs. S3A as a function of dist2coast. For
open-ocean scenarios, Brown-Peaky (J3) and WHALES-SAR (S3A) have the least amount
of total outliers, accounting for 8.1% and 15.8%. The outliers of all retrackers stay below
20%, with the exception of STARv2-PLRM, which amounts to 27 %. The J3 retrackers tend
to be less prone to outliers, but since different datasets (due to its nature to have different
orbits) were used, this hypothesis needs to be considered with care. Among the new
retrackers, J3 datasets contain less outliers. This is likely to be a consequence of a more
conservative use of the qual-flag, since in the standard products (MLE-3 for J3 and
SAMOSA for S3A) the opposite is observed. When approaching coast, the number of
outliers is significantly increased for both LRM and DDA retrackers. The number of outliers
range from 27.9% to around 50% (LRM) and from 42.5% to around 60% (DDA) for the best
performing retrackers (approaching coast in the intervals 20 km, 10 km, and 5 km), which
are Brown-Peaky and TALES for J3 and SAMOSA, WHALES-SAR, and TALES-PLRM for
S3A. It appears that the number of outliers quasi-linearly increases with a decreasing
dist2coast. The differences of the amount of total outliers can be quite large, e.g. when
considering areas that are very close to the coast (less than 5 km), SAMOSA is able to
produce estimates for almost 50% of the measurements, whereas Adaptive retrieves only
16.5% of valid SWH samples, which is very few.

Figure 3:  The total number of outliers as a function of dist2coast for (a) J3 and (b) S3A.
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Figure 4: A comparison of outlier types as a function of dist2coast for the retrackers (a)
Brown-Peaky and (b) TALES.

Figure 5: A comparison of outlier types as a function of dist2coast for the retrackers (a)
SAMOSA and (b) WHALES-SAR.

Figure 4 depicts the distribution of the outliers types invalid, out_of_range, and mad_factor
as a function of dist2coast for the retrackers Brown-Peaky and TALES. They both follow a
subwaveform approach that discards the trailing edge of the waveform, which is mostly
contaminated by spurious signals in the coastal zone. One might thus expect a similar outlier
behaviour, but their number of outliers differ. TALES exhibits a significant amount of about
15-23 % of out_of_range outliers, whereas Brown-Peaky shows none but instead an
increased amount of invalid estimates (21 % vs. 11 % for dist2coast < 20 km). This
underlines the role of qual-flag: It is up to the strategy of the individual retracker, whether to
decide if an estimate is set to be bad or remained as a potential outlier (out_of_range or
mad_factor). Interestingly, in general, the fraction of mad_factor outliers is increased only
slightly by a factor of about two when approaching coast, whereas the total amount of
outliers increases significantly, meaning that the mad_factor does only weakly depend upon
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the dist2coast. In contrast, the estimate is either good or very bad or missing in the coastal
zone, yielding the measurement to be an outlier of type invalid or out_of_range. In Figure 5,
the outlier types of the two DDA retrackers SAMOSA and WHALES-SAR are shown. Both
exhibit a low amount of total outliers, as shown in Figure 3. SAMOSA’s major fraction of
outliers mostly accounts for invalid estimates, no out_of_range values, and only few
mad_factor-type outliers. This signifies that it is capable of identify correctly, which values
might be reliable estimates. The total amount remains relatively constant in the coastal zone
with about 48 %, even when further decreasing the dist2coast. In comparison, as shown in
Figure 5-(b), WHALES-SAR (which still exhibits one of the best outlier characteristic of the
investigated retrackers) sets some SWH estimates to out_of_range values. This might arise
from the fact that only a subwaveform is considered. Likewise as with SAMOSA, the number
of invalid points make up the majority of outliers and the number of mad_factor samples
remain relatively constant between about 3-5 %.

To conclude the outlier analysis, one can state the following points:

- The number of outliers is significantly increased in the coastal zone and increases
further when approaching coast.

- In open-ocean, the number of total outliers amounts to less than 20 %.
- Most of the retrackers’ outlier types are invalid samples, which originate from

measurements, whose qual-flag is poorly defined.

with the following retracker showing the least amount of outliers:

- J3: Brown-Peaky, TALES
- S3A: SAMOSA, WHALES-SAR
- S3A-PLRM: TALES-PLRM

4.2 Noise Analysis

In this section the intrinsic noise of the retracked datasets is evaluated. As described in RR
definition document, the noise is defined as the SD of a 20-Hz measurement of the
along-track series.
An important fact to consider is that some of the investigated retracked datasets already
have a denoising technique applied:

- J3: WHALES_adj, WHALES_realPTR_adj, Adaptive_HFA, and STARv2
- S3A: LR-RMC_HFA, STARv2-PLRM

These datasets exhibit a reduced noise performance and need to be evaluated separately. It
also has to be noted that some of the denoising techniques can be applied independently
a-posteriori after the SWH estimates (L2 data) were retrieved so they can be applied to
arbitrary retrackers. Other retrackers such as the STARv2/STARv2-PLRM algorithm have an
inherent denoising implied.

Figure 6 depicts the median noise values of (a) J3 and (b) S3A classified by the area of
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interest: overall, coast, and open-ocean. For the J3/LRM-retrackers without denoising,
Adaptive and WHALES have the least and second least median noise values of about 0.23
m. While also including denoised datasets into consideration, Adaptive_HFA has the lowest
median noise values with about 0.12 m, followed by STARv2 with about 0.18 m. For the S3A
algorithms without denoising, DeDop-Waver shows the lowest median noise values with
about 0.32 m. Among the denoised algorithms, STARv2-PLRM has the least median noise
values with a slight increase for the coastal scenario from 0.17 m to 0.25 m. This
demonstrates the effectiveness of the used denoising techniques.

When analysing the dependence of the median noise values for open-ocean and coastal
scenarios, one can notice a slight increase of noise, which is more or less pronounced on
the individual algorithms. For instance, STARv2’s value is increased from about 0.18 m to
about 0.24 m, whereas Adaptive_HFA’s value is increased by just 0.01 m. In conclusion, it
can be stated that there is only a minor dependence on the dist2coast.

Figure 7 depicts the noise as a function of SWH and the different sea states. The plots
demonstrate the strong dependence of the sea state. The results are in accordance with the
ones shown in Figure 6.

For LRM, Adaptive exhibits the best noise performance for all sea states (no denoising
applied). With denoising applied, Adaptive_HFA wins for low and average sea states,
whereas STARv2 outperforms Adaptive_HFA for high and very high conditions.
With respect to S3A and low sea states, the noise levels of WHALES-SAR, DeDop-Waver,
LR-RMC_HFA (denoised), and STARv2 (denoised) are at a similar level. For average, high
and very high sea states, STARv2-PLRM shows significantly low noise values. This might be
explained by the nature of the STARv2-PLRM algorithm, for which neighbouring SWH
estimates are taken into account for reducing abrupt changes in the estimates and thus
reducing the SD of the 20-Hz measurements (the same applies to the LRM version of
STARv2). Thereafter comes the LR-RMC algorithm as the second best of the S3A retrackers
at average, high, and very high sea states.

For very low SWHs of less than 1 m, one can observe an increased noise level. This is due
to the fact that sea states with very low wave heights induce a waveform with a very steep
slope of the leading edge, which thus is undersampled. Smith and Scharroo (2015) has
investigated this issue and suggested a simple zero-padding, with which this effect can be
mitigated. Comparing the noise level of the standard retrackers MLE-4 and SAMOSA (LRM
vs. DDA) for low and average sea states, one can conclude that the performance is
improved significantly, which is in accordance to Gommenginger et al. (2013).

Furthermore, it can be stated that most of the novel retrackers show significant
improvements across all sea states, as compared with the standard retrackers MLE-4 and
SAMOSA. This is particularly pronounced for high and very high sea states, for which both
retrackers show at least twice as much noise level as compared to the novel approaches.
When comparing the absolute noise levels evaluated here with those mentioned in the
literature, one can observe that they differ from each other. For instance, Fenoglio-Marc et
al. (2015) has conducted a study in the German Bight and estimated the noise values of 6.7
cm and 13 cm (for SWH values around 2 m) for DDA and PLRM (considering open-ocean
measurements with dist2coast>=10 km), respectively. In ESA CP40 project report (2015),
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noise values were retrieved to be 8.5 cm and 11.09 cm for DDA and LRM for open-ocean
scenarios across all sea states. Ardhuin et al. (2019) has compared the noise for a full cycle
of the missions J3, S3B-LRM, and S3B-SARM, and estimated them to be 0.50 cm, 0.47 cm
and 0.38 m for SWH values of around 2 m, respectively. From this, it can be concluded, that
the intrinsic noise performance strongly depends upon the region of interest, the sea state,
and whether the coastal zone is included or not in the considerations. With the values
evaluated in this RR exercise, ranging from 0.12 m to 0.70 m, the findings are in accordance
to the literature.

To sum up the noise analysis, the following can be stated:

- The intrinsic noise shows only a minor of the dist2coast and strong dependence on
the sea state.

- The noise is reduced for most of novel retracking algorithms.
- DDA retrackers show a better noise performance than their adapted PLRM

counterpart.
- The following retrackers exhibit the best intrinsic noise characteristic:

- J3: First: Adaptive, Second: STARv2 (although inherently denoised).
- S3A: First: STARv2-PLRM (although inherently denoised), Second: LR-RMC.

Figure 6: Median noise as a function of dist2coast for (a) J3- and (b) S3A-retracking
algorithms.
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Figure 7: Noise level of the individual retrackers as a function of SWH for (a) J3- and (b)
S3A-retracking algorithms with the sea state noted at the bottom.

4.3 Wave Spectral Variability Analysis

Spectra were calculated according to the Welch method described earlier (1024-pt FFT, with
Hann weighting and overlapping of data spans by 50% to maximise the number of effectively
independent spectra), with order 50000 spectra being calculated for each retracker (across
all wave height conditions).   The results are shown in Figures 9 and 10.

Figure 8: Spectra of SWH derived from all files provided for J3
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Figure 9: Spectra of SWH derived from all files provided for S3A.

The MLE-4 algorithm has been used for all LRM altimeter missions in the last decade, being
provided within the standard data products from the agencies, and thus it serves as a useful
reference with which to compare the others. At the high wavenumber (short wavelength)
end it is dominated by white noise, with a constant level being shown for scales under ~3
km. At the long wavelength range it should represent the real scales of variability of the
geophysical signal. The spectral slope in this region indicates the cascade of energy from
larger scales to smaller ones and may vary with the environment. Inbetween (in the range
7-30 km) there is a "spectral hump" (Dibarboure et al., 2014) that was first noticed in spectra
of Sea Level Anomaly but could also be noted for sigma0 (Quartly, 2009). This relates to the
size of the instrument footprint, as small features directly on the satellite track will affect all
returns in a similar manner whilst the satellite traverses that distance. Dibarboure et al.
(2014) were able to show that such effects (for SLA) were minor for Cryosat-2 as it has a
much reduced footprint.

4.3.1 Jason-3

For Jason-3 (Figure 8a), the other default algorithm (MLE3) has even higher spectral levels
than MLE-4 due to the existence of other waveform characteristics (e.g. skewness or
mispointing) that are leaking into the SWH estimates. In the absence of anomalous
waveforms, the Brown-Peaky algorithm conforms closely to the MLE-4 and thus its spectra
is similar. A number of algorithms focus primarily on the information within the leading edge,
neglecting the returns from the wider irradiated disk on the sea surface, and thus in effect
they utilise a narrower footprint. This is borne out by the spectra of their products having a
much weaker or non-existent spectral hump.
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Secondly, a number of algorithms differ in the level of the plateau of white noise at the
smallest scales. This relates to the precision i.e. the measure of short-scale variability
detailed earlier, with the algorithms that employ an adjustment to overcome the effects of
correlated noise i.e. those labelled 'adj' or 'HFA' showing a clear improvement over their
parent product. The effect for 'Adaptive_HFA' is over a wider range of scales because of
how it was implemented. It is noted that the spectrum for STARv2 does not flatten off
completely, probably due to the intrinsic method it uses for determining a SWH profile for
each track.

4.3.2 Sentinel-3A

For the spectra from Sentinel-3A (Figure 8b) many similar features are noted. The shapes
of the spectra for MLE-4, TALES and STARv2 applied to the PLRM data are similar to their
LRM equivalents, but with the plateau level at the short wavelength end differing on account
of the different statistics for the measurement noise due to fading. In the long wavelength
regime the spectra are on a par with those for Jason-3. Somewhat surprisingly the DDA
spectra show some energy in the region of the “spectral hump”, and their curves do not
flatten off completely at very short wavelengths.

4.3.3 Overview of Spectral Analysis

The main purpose of the spectral evaluation was to ascertain the variability at the scales of
25-50 km and 50-100 km (highlighted in Figure 8) that were of interest to the GCOS
community. For this measure the best LRM/PLRM performance is achieved by STARv2 and
then Adaptive_HFA, with LR-RMC_HFA having the lowest power levels of the spectra of
DDA retrackers. However, there is some concern that these products may have applied
excessive smoothing removing some of the power levels associated with the real
geophysical signals, but there is no recognised agreement on what the true spectra of SWH
should be like.

4.4 Comparison against Wave Models

The statistics of the comparison of the 1-Hz retracked data against the ERA5-based hindcast
(ERA5-h) wave model, which does not assimilate any satellite altimetry data, are shown in
Figure 10 and Figure 11 for J3 and S3A as a function of dist2coast and the sea state on the
left and right columns, respectively. The three metrics correlation, median bias, and SDD are
presented and discussed in this section.

It needs to be emphasised at this point of the analysis that the comparison against the wave
model is limited to the resolution of the ERA5-h wave model (which is 18 km). Since the
posting rate of the SWH series and the model are reduced to 1-Hz, potential high-frequency
variations of the SWH series might thus be masked or some retrackers that inherently
smooth the SWH series might benefit from this type of analysis (e.g. STARv2 or the _HFA
variants). In consequence, this means that if a retracking algorithm such as STARv2 is
strongly filtering an SWH series, it might show an excellent correlation against the wave
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model and a low SDD, which is shown in the following subsections. However, at the same
time, the smoothed SWH series lacks a significant amount of energy.

Moreover, a wave model has limitations in the coastal zone, where wave interactions with
bathymetry and land-shading effects require often regional nested very high resolution
models to improve the simulations. Therefore this assessment is complementary to the use
of a ground-truth such as a large buoy dataset, but can still be useful to derive further noise
characteristics of the retracking w.r.t. an independent source and erroneous estimates of
SWH (although realistic and therefore not detectable by the outlier analysis) near the coast.

4.4.1 Jason-3

Figure 10 depicts the comparison statistics against the ERA5-h model for the retracked J3
datasets. In the first row, the correlation coefficient is presented as a function of dist2coast
and sea state. Apart from MLE-3, all retrackers show a very good correlation with a
coefficient of around 0.97 for the overall and open-ocean scenario. However, in the coastal
zone, MLE-3, MLE-4, and TALES show a deteriorated performance with a correlation of
0.8-0.85 (0.49 for MLE-3). The rest of the retrackers show a very high correlation of 0.96 in
the coastal zone. For average and high sea state the differences are less pronounced with
most of the retrackers showing a high correlation of around 0.92. For low sea states,
Adaptive, and STARv2 prove the best correlation with values of around 0.87, whereas
MLE-3, MLE-4, and TALES show degraded correlations. For very high sea states, all
retrackers (apart from Brown-Peaky) show similar degraded correlations of around 0.72.

The median bias in the second row of Figure 10 depicts how much the SWH is different from
the model, with lower values indicating a more accurate dataset. In this case, the median
bias depends on both the area of interest and the sea state. For coastal scenarios, it can be
said that the estimates tend to be overestimated (meaning the retracked value is higher than
the model, whereas for open-ocean the retrieval are rather underestimated. With an
increasing sea state, the median bias also tends to increase. STARv2 strongly
underestimates large wave heights, showing a median bias of 0.51 m. Abdalla et al. 2018
(Figure 6-top) have plotted the monthly bias for MLE-4 (J2 mission), which ranges at around
0.1 m (sign was aligned, since the definition of the bias is vice versa), which is in accordance
of the median bias value of around 0.08 m in Figure 10 (centre row, left for dist2coast > 0
km).

The last row of Figure 10 depicts the SDD. All retrackers show comparable SDD values of
around 0.20-0.40 m for most of the conditions with the exception of increased values for very
high sea states. MLE-3, MLE-4, and (partially) TALES show increased values for low and
average sea states and particularly in the coastal zone. In Abdalla et al. 2015, an SDD value
of 0.20 m was reported for MLE-4 for the SARAL/AltiKa mission, which is in good agreement
with the value of about 0.25 m, when considering an average sea state as shown in Figure
10 (last row, right).

In conclusion, most of the retrackers show similar performances in terms of correlation,
median bias, and SDD for coastal, open-ocean scenarios and most of the sea states, when
comparing the 1-Hz retracked data with the ERA5-h wave model. MLE-3, MLE-4, and
TALES exhibit a deteriorated performance, especially in the coastal zone.
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4.4.2 Sentinel-3

The assessed S3A retrackers show for the overall and open-ocean scenarios a very high
correlation against the ERA5-h wave model of around 0.96 (with the exception of SAMOSA:
0.89). This also applies to the coastal zone, where all retrackers exhibit a high correlation of
around 0.95, with the exception of MLE-4-PLRM (~0.75), TALES-PLRM (~0.85) and the
standard L2 product SAMOSA (0.43). All retrackers (apart of SAMOSA) show a very good
correlation of ~0.9 of for average and high sea states. With respect to low sea states,
LR-RMC/LR-RMC_HFA have the highest correlation of 0.88, followed by WHALES-SAR,
STARv2-PLRM, and DeDop-Waver, which amount to around 0.83. SAMOSA shows the
worst correlation across all sea states. None of the algorithms are able to correctly retrieve
very high sea states, with an average correlation of about 0.2 (SAMOSA: around 0.0). The
inaccurate estimates for very high sea states might be explained by the very few samples
that are available in all datasets: Out of the 512 netCDF files (pole-to-pole tracks), there are
only around 260 1-Hz SWH estimates apparent (in comparison for the J3 analysis: around
2100). STARv2-PLRM shows an inverse correlation of -0.20 for very high sea states, which
again can be attributed to the scales of denoising that are likely to be too wide to correctly
observe areas with very high waves. The authors of Abdalla et al. 2018 have reported
correlation values of 0.98 and 0.94 for the CS2 NE Atlantic and Pacific Box, with the latter
one being placed in the open-ocean. These are in a rough accordance to the evaluated
value of 0.90, as shown in Figure 11 (top row, left, dist2coast > 0 km).

The median bias has only a minor dependence of the dist2coast. LR-RMC, LR-RMC_HFA,
MLE-4-PLRM, TALES-PLRM, and STARv2-PLRM show a very small median bias of less
than 0.10 m in the coastal zone. SAMOSA exhibits a very large bias in the coastal zone with
a value of -0.47 m, which is in accordance to the degraded correlation, as discussed before.
The LR-RMC variants incorporate almost no median bias in open-ocean and in all sea states
with less than 0.05 m. For very high sea states, most of the retrackers have a high median
bias. This is as expected from the correlation analysis and might be due to the very few
samples that are available for such high sea states. The bias that was retrieved for SAMOSA
in the NE Atlantic or Pacific Box of CS2 is very low with values of about -0.08 m and -0.03 m
(sign swapped by authors, since the definition of the bias is swapped), as shown in (Figure 4
in Abdalla et al. 2018), which is very well in accordance with the bias value of -0.06 m for the
average sea state (Figure 11, centre row, right).
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Figure 10. Comparison of the correlation coefficient, median bias, SDD against ERA5-h
model of the individual J3 retrackers as a function of dist2coast on the left-hand side and as
a function of SWH on the right-hand side.

Public document 35



LOPS and CCI_Sea_state Team CCI+ Phase 1: Sea_State_cci: PVASR

Figure 11. Comparison of the correlation coefficient, median bias, SDD against ERA5-h
model of the individual S3A retrackers as a function of dist2coast on the left-hand side and
as a function of SWH on the right-hand side.

4.5 Comparison against In-situ Data

The statistics for the comparison of the median of 51 nearest 20 Hz observations with buoys
are shown in Figure 12 and Figure 13 for J3 and S3A as a function of dist2coast and the sea
state on the left and right columns, respectively. The three metrics (correlation, median bias,
and SDD) are presented and discussed in this section.
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Figure 12. Comparison of the correlation coefficient, median bias, SDD against in situ buoys
for the individual J3 retrackers as a function of dist2coast on the left-hand side and as a
function of SWH on the right-hand side.

4.5.1 Jason-3

Figure 12 depicts the comparison statistics against buoy data for the retracked J3 datasets.
In the first row, the correlation coefficient is presented as a function of dist2coast and sea
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state. All the retrackers produce SWH values that are highly correlated with the buoy data
for locations far from the coast. This is consistent with many previous studies, which have
restricted validation data to those buoys in deep water and show correlations of >0.9 (Ref1,
ref2). In this scenario, the MLE-3, WHALES_adj and WHALES_realPTR_adj perform worse
than the default (MLE-4) algorithm, with STARv2 being slightly better than all the others. It is
a little surprising that the algorithms reducing the small-scale noise on the estimates also
diminish the correlation with independent standards. In the coastal zone (here defined as
dist2Coast<20 km) performance of all algorithms is reduced significantly, but the same
pattern in relative performance remains i.e. MLE-3, WHALES_adj and
WHALES_realPTR_adj are the worst, but in this case STARv2 is more clearly the best. As
well as the chance of potential land contamination of the waveform data, a switch in
comparisons from open ocean to coastal will also results in a different set of typical SWH
conditions, with lower SWH values nearer the coast. The plots on the right-hand side show
the correlation properties as a function of SWH, mixing together both the coastal and open
ocean data. (All correlation values are much less than for the general open ocean case in
the left-hand column, because in each case data are only being compared over a narrow
SWH span, which affects the correlation estimate more than the bias and SDD.) As
expected all algorithms struggle to perform as well at SWH<2 m, because of the poor
waveform sampling of the leading edge. However, yet again the same three algorithms
perform much worse than MLE-4 and STARv2 is clearly the best. There is also some
differentiation between the other algorithms with Brown-Peaky's performance exceeding the
others for these low wave heights. STARv2 is also the best performer in the 2-5m category,
being the only one to perform better than the default product (MLE-4), with all the good
algorithms giving similar correlations for the high SWH conditions.

In terms of bias, all algorithms return a negative value (i.e. buoy value less than altimeter
estimate) for both open ocean and coastal conditions. In most cases, the discrepancy is of
order 5 cm (except for Brown-Peaky), and could of course be easily corrected for within the
algorithms. However, the error is not a simple offset but a function of the wave height
conditions encountered. Indeed, for this measure, MLE-4 provides the most stable bias of
the algorithms assessed.

The third row shows the standard deviation of the differences, which will include errors in the
altimeter algorithms, errors in the buoy data and errors due to the mismatch in locations.
However, the lowest errors will still indicate the best performing algorithms, and will tend to
mirror the results shown in the plots of correlation coefficient. Thus in terms of SDD, MLE-3,
WHALES_adj and WHALES_realPTR_adj show worse performance than MLE-4, with
STARv2 being the best. For this measure, STARv2 shows its superiority in all dist2Coast and
SWH categories.

4.5.2 Sentinel-3

The data analysis for Sentinel-3A (Figure 13) shows many similar patterns, but with more
extreme results. In particular there are very good correlations for all algorithms in the open
ocean, apart from the default algorithm (SAMOSA). The effect is even more pronounced in
the coastal zone, which is very surprising given that DDA algorithms are expected to do
much better in this regime than LRM-based ones. For example in a study of Sentinel-3
performance compared with coastal buoys around the UK, Nencioli and Quartly (2019) found
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that correlations remained high and SDD low as SAMOSA was used near the coast,
whereas the PLRM default (MLE-4) got worse in those situations. The two new algorithms
applied to the PLRM data (TALES and STARv2) generally perform better than the default
(MLE-4).

Figure 13. Comparison of the correlation coefficient, median bias, SDD against in situ buoys
for the individual S3A retrackers as a function of dist2coast on the left-hand side and as a
function of SWH on the right-hand side.
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In terms of bias, SAMOSA shows the most extreme values: most negative in the coastal
zone, most negative in the 0-2 m range and most positive in the SWH>5 m category. The
variability in bias also seems larger for several algorithms than was the case for J3 data,
possibly reflecting less prior effort in tuning of algorithms to buoys. The plots of SDD show a
fairly consistent picture that all the new algorithms perform better than the default ones
(SAMOSA and MLE-4), giving errors of <0.3m, which is slightly better than that shown for J3
(bottom row of Figure 12). However, it should be borne in mind that in each case buoys are
compared with the nearest track, and that due to their different spatial sampling strategies
the typical separation of buoys from S3A passes is much less than the separation from J3
passes

4.5.3 Overview of Buoy Comparison Results

STARv2 provides the best overall performance for both J3 (LRM) and S3A (PLRM); of the
DDA algorithms, the best is LR-RMC_HFA. One caveat on this set of results is that the
methodology for STARv2 fits an evolving SWH profile through large sections of data, and
thus the median of 51 20-Hz observations that we use here actually incorporates information
from a larger spatial extent. This makes its estimates less sensitive to random noise;
however the magnitude of this effect is hard to quantify and is believed to vary with SWH
regime. Secondly, we note that the SDD values coming out of this Round Robin analysis are
a little higher than those from some other researchers (REF, REF). This is because the buoy
selection was done without sight of the altimeter sampling pattern, such that in practice
some buoys are not well positioned for validation of the chosen tracks. The methodology laid
down in the original Round Robin document was retained, although other researchers
choose to be more selective about which buoy-altimeter match-ups are included e.g. see the
methodology of Nencioli and Quartly (2019). The relatively poor performance of SAMOSA is
a surprise. It is possible that the algorithm may be good and this may be a flagging issue i.e.
that the supplied quality flags with the SAMOSA product let too many poor values through.
However, the Round Robin exercise was designed as an assessment of the products
(estimated SWH values and associated quality-flagging), so there has been no effort
devoted to separately assessing the efficacy of the flagging. We note that a new version of
SAMOSA has been implemented since we performed the Round Robin analysis, but this
version has not been assessed.

4.5.4 Perspectives

An important fact that was not considered in this evaluation is the numbers of valid 1-Hz
measurements that are mainly attributed to the supplied quality flag. As described in Section
4.1, the retrackers show significant differences in terms of number of outliers. Two of the
best performing algorithms LR-RMC and STARv2 also show the highest number of outliers
within 20 km of the coast. It becomes obvious here that it is a trade-off between quality and
quantity of the measurements. The new retrackers analysed in this study are provided with
an effective quality flag that allows reliability of the estimates in the coastal zone, but the
amount of good quality data differs significantly among the datasets.
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In an extension of the work by Quartly & Kurekin (2020), some of the buoy assessments
were redone using 20-point averages (effectively 1 Hz means), but with different
requirements (1, 5, 10 or 20) on the number of valid measurements used in calculating the
average.  Not surprisingly all algorithms showed an improvement when averages based on
only a few points were discarded, but the improvement was much greater for some than
others.   This emphasises how important correct flagging is in the evaluation and utilisation
of an algorithm.

For future assessments, we recommend to take also into account the number of valid
measurements.

4.6 Round Robin SAR

Generally, both algorithms show quite high precision with RMSE of around 26 cm for wv1
and 28 cm for wv2 by comparison with CMEMS and around 41 cm by comparisons with
NDBC. The resulting RMSE is in the order of ground truth noise, as the scattering between
CMEMS and WW3 hindcast and also NDBC results in RMSE of 28 cm by comparison for
individual NDBC buoy locations. This high precision RMSE of in average 27 cm has not yet
been published in literature and is an achievement performed within the framework of this
project.

The Round Robin comparisons show both algorithms having identical SWH results with a
total score difference of ~ 0.001. DLR has a little better RMSE achieved and Ifremer has
slightly less filtered data (No-Sea-State percentage). By CMEMS validation, the total RMSE
averaged for wv1 and wv2 is 0.263 m (DLR) and 0.273 m (Ifremer), the no-sea-state
percentage is 1.08 % (DLR) and 0.24 % (Ifremer). For the NDBC validation the similar
number can be obtained: RMSE of 0.414 m (DLR) and 0.445 m (Ifremer) and no-sea-state
percentage of 1.45 % (DLR) and 0.83 % (Ifremer).

The resulting total scores for both algorithms calculated according to the formulas given in
section 5.2. results in ~0.14.

For total comparisons for SWH (all conditions) estimated by DLR and Ifremer the following
Tables show the detailed comparison of both algorithms. The comparisons are also
presented in Figure 14 (for RMSE), Figure 15 (for BIAS), Figure 16 (for outliers) and Figure
17 (for no-sea-state percentage).

SAR Round Robin total comparison

wv1 wv2

DLR IFREMER DLR IFREMER

RMSE, m CMEMS 0.24635 0.26013 0.28019 0.28548

NDBC 0.41577 0.42903 0.41231 0.46226

BIAS, m CMEMS -0.03593 -0.00757 -0.02535 0.01016
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NDBC -0.10321 0.11152 -0.10045 0.12034

No-sea-state
percentage, %

CMEMS 0.65810 0.11721 1.50771 0.12251

NDBC 1.50771 0.12251 2.33298 1.18153

Outliers
percentage, %

CMEMS 0.87650 0.57940 0.84942 0.47539

NDBC 0.97120 0.86455 1.12433 0.65217

SAR Round Robin CMEMS S1 wv1

Domain
SWH, m

SWH
%

RMSE, m BIAS, m No-sea-state
percentage, %

Outliers percentage,
%

DLR IFREMER DLR IFREMER DLR IFREMER DLR IFREMER

0.0 - 1.5 11.764 0.28008 0.31014 -0.12171 0.17958 2.79656 0.10586 0.43639 0.60466

1.5 - 3.0 61.959 0.19675 0.20573 -0.03136 -0.04886 0.50908 0.10996 0.68691 0.42965

3.0 - 6.0 24.491 0.30428 0.31337 -0.01216 0.01922 0.05302 0.13759 0.97499 0.50920

6.0 < 1.786 0.51955 0.58345 0.02849 -0.17505 0.08078 0.16407 1.09047 0.12325

TOTAL 100.00 0.24635 0.26013 -0.03593 -0.00757 0.65810 0.11721 0.87650 0.57940

SAR Round Robin CMEMS S1 wv2

Domain
SWH, m

SWH
%

RMSE, m BIAS, m No-sea-state
percentage, %

Outliers percentage,
%

DLR IFREMER DLR IFREMER DLR IFREMER DLR IFREMER

0.0 - 1.5 11.893 0.34212 0.35084 -0.15318 0.19698 5.24198 0.13409 0.43233 0.50656

1.5 - 3.0 61.740 0.22708 0.22315 -0.02274 0.04539 1.35065 0.11037 0.89351 0.42080

3.0 - 6.0 24.580 0.33291 0.34659 0.02356 0.01367 0.18875 0.14450 0.89729 0.40756

6.0 < 1.786 0.55897 0.60751 0.02022 0.12333 0.24029 0.16234 1.04125 0.20325

TOTAL 100.00 0.28019 0.28548 -0.02535 0.01016 1.50771 0.12251 0.84942 0.47539

SAR Round Robin NDBC S1 wv1

Domain
SWH, m

SWH
%

RMSE, m BIAS, m No-sea-state
percentage, %

Outliers percentage,
%

DLR IFREMER DLR IFREMER DLR IFREMER DLR IFREMER
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0.0 - 1.5 28.737 0.37024 0.43051 -0.24418 0.34686 2.01342 0.65359 0.67114 0.65789

1.5 - 3.0 51.302 0.37357 0.36582 -0.10264 0.04284 0.00000 0.56180 1.01730 1.12994

3.0 - 6.0 18.322 0.50478 0.52764 0.04289 0.01574 0.00000 0.00000 1.05263 1.05263

6.0 < 1.639 0.95620 0.84081 0.66728 0.56993 0.00000 0.00000 0.00000 0.00000

TOTAL 100.00 0.41577 0.42903 -0.10321 0.11152 0.57859 0.47801 0.97120 0.86455

SAR Round Robin NDBC S1 wv2

Domain
SWH, m

SWH
%

RMSE, m BIAS, m No-sea-state
percentage, %

Outliers percentage,
%

DLR IFREMER DLR IFREMER DLR IFREMER DLR IFREMER

0.0 - 1.5 0.34758 0.44386 -0.23071 0.35301 4.97238 1.10803 0.27624 0.28011

1.5 - 3.0 0.37292 0.36480 -0.07603 -0.01096 1.00251 1.27877 1.75439 1.03627

3.0 - 6.0 0.50125 0.59251 0.04294 -0.01076 0.00000 1.20482 1.18343 0.60976

6.0 < 1.16420 1.15387 0.74060 -0.71695 0.00000 0.00000 0.00000 0.00000

TOTAL 0.41231 0.46226 -0.10045 0.12034 2.33298 1.18153 1.12433 0.65217
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Figure 14: SAR Round Robin detailed comparison RMSE

Figure 15: SAR Round Robin detailed comparison ABS(BIAS).
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Figure 16: SAR Round Robin detailed comparison. Outliers with local SWH >3(local RMSE) for each
bin.
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Figure 17: SAR Round Robin detailed comparison. Percentage of no-sea-state percentage
(non-valid).

Figure 18 shows the RMSE distribution for four sea state domains and mean RMSE noise
estimated.

Figure 18 RMSE distribution for four sea state domains and mean RMSE noise estimated.

The noise analysis shows similar trends for both algorithms:

- the accuracy averaged for forecast model and buoy measurements is in the order of ~30
cm for the sea state category of moderate sea state, where ~60% of all data points are
located
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- this averaged accuracy declines with increasing SWH values to ~42 cm for rough sea
state with SWH about 4-5m and to ~80 cm for very high sea state over 6m SWH. This is
connected to both accuracy of the SAR methods and to an increased error in the ground
truth, which also grows proportional to the larger sea state values. However, if one
connects the local RMSE with the mean value for this sea state domain, the same
scatter index SI can be obtained.

- for low sea state (SWH<1.5) m some difficulties can be seen in comparison to moderate
sea state, the lower accuracy does not match the tendency of higher error with higher
sea state described before. This effect is connected to the specifics of SAR imaging of
sea surface, where the short and small waves cannot be imaged individually, but are only
visible as noise. Although it is possible to derive their characteristics from the noise, the
accuracy is slightly lower in contrast to visible wave patterns.

Note that the validation was carried out for -60°<LAT<60° in order to avoid ice coverage.
However, as analyses showed, sea ice can be encountered until -60°<LAT<55° so that both
SWH, from the model and estimated from S1 WV, may be affected. For the DLR algorithm a
number of outliers and no-sea-state flags are especially high in this area. In case the
validation area is reduced to 55°<LAT<60°, the resulting total RMSE improves by ~1.5 cm.

Figure 19 shows the distribution of squared difference between SWH estimated form S1 and
ground truth (CMEMS). On the graph all 270.000 RR data points are shown, the horizontal
axis means latitude of acquired and compared data. As can be seen, in both algorithms, an
increase of these differences appears at LAT<-58°. This inconsistency is due to sea ice.

Figure 19: Distribution of squared difference between SWH estimated form S1 and ground
truth (CMEMS). For both algorithms, the ice coverage impact is quite visible for
LAT<-58°.The complete comparison was done for -60°<LAT<60° in order to avoid ice
coverage. As can be seen this masking is not enough to completely eliminate the ice
uncertainty produced by both: CMEMS and S1.
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Figure 20: An example of an along-orbit comparison for one long overflight of around 12.000
km (product ID S1B_WV_SLC__1SSV_20190118T183208_20190118T190015_014552_01B1BF_F3EF)
plotted separately for wv1 (even numbers on the first graph, 200 km between each points)
and wv2 (odd numbers on the second graph) vignettes. Red points mean DLR SWH and
blue are CMEMS SWH temporally interpolated to 3h outputs.

In order to prove that the method does not include a smoothing, along-track comparisons
and comparisons of PDFs were carried out. A typical example of an along-orbit comparison
for a long overflight of around 12.000 km is presented in Figure 20. The wv1 (even numbers
on the first graph, 200 km between each points) and wv2 (odd numbers on the second
graph) imagettes are plotted separately. The red points stands for DLR SWH and blue points
stands for CMEMS SWH temporally interpolated to 3h outputs.

Figure 21 shows the PDF for SWH distribution in ground truth (CMEMS, blue curves in both
graphs) and in SWH estimated from S1 WV vignettes (red curves) built for both algorithms.
The Ifremer algorithm comparison is on the left panel, the DLR results are on the right panel,
the differences between PDF-S1 and PDF-CMEMS for both algorithms are green. As the
DLR algorithm was tuned with CMEMS data, the comparison results in a slightly better
difference. The Ifremer algorithm was tuned using altimeter data, this probably results in a
light smoothing effect for low wave heights.
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Figure 21 PDF for SWH distribution for CMEMS and estimated from S1 WV imagettes.

5. Weighting matrix for results

5.1 Altimeter

The Altimeter Algorithm Development Team and in particular PML and TUM, which are
responsible for the Round Robin exercise, brought the results of the Round Robin without
applying any weighting matrix. Considering these, the Consortium has taken a decision in
collegiality during a progress meeting.

The results and criteria of this decision process have been summarised and approved by
ESA in the document “Round Robin: Final selection and ranking of algorithms”
[Sea_State_cci_RR_Final_Selection_v1.1-signed.pdf].

5.2 Synthetic Aperture Radar

The four performance parameters defined in section 3.2 were calculated for each algorithm,
with a weighting according to the significant wave height ranges. The performance
parameters are calculated for Sentinel1 WV1 and WV2 wave mode and considered with
equal weighting in the total score:

total score = 50%∙WV1score +50%∙WV2score

The separate evaluations using either collocations with CMEMS model hindcast data or with
NDBC buoy data are weighted stronger towards the model data according to:

WV1score = 70%∙CMEMSscore+30%∙NDBCscore

WV2score = 70%∙CMEMSscore+30%∙NDBCscore

All four performance parameters RMSE, BIAS, Outliers percentage, No-sea-state
percentage are normalized for each of the four sea state domains:

𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅_𝑁𝑂𝑅𝑀𝐴𝐿𝐼𝑍𝐸𝐷
𝑏𝑖𝑛

=
𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅−𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅

𝑚𝑖𝑛

𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅
𝑚𝑎𝑥

−𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅
𝑚𝑖𝑛

The following Table lists the Min and max boundaries for normalization of RMSE, BIAS,
Outliers percentage and No-sea-state percentage

bin

N

SWH
range, m

RMSE, m No-sea-state, % Outliers, % ABS(BIAS), m

min max min max min max min max

1 0m-1.5m 0.2 0.6 0.0 30 0.0 5 0.0 0.5
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2 1.5m-3m 0.2 0.6 0.0 30 0.0 5 0.0 0.5

3 3m-6m 0.2 1.0 0.0 50 0.0 10 0.0 0.5

4 >6m 0.2 1.0 0.0 60 0.0 10 0.0 0.5

The score for each wv1 and wv2 for CMEMS and NDBC is a sum of products:

𝑊𝑉1
𝑠𝑐𝑜𝑟𝑒

/𝑊𝑉2
𝑠𝑐𝑜𝑟𝑒

=
𝑁=1

4

∑ 𝐾
𝑁
𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅_𝑁𝑂𝑅𝑀𝐴𝐿𝐼𝑍𝐸𝐷

𝑁

The following Table shows the weightings for each bin of SWH for each of the performance
parameters: RMSE, BIAS, Outliers percentage, No-sea-state percentage

bin

N

Weighting factor K(N) for different parameters

SWH
range, m

RMSE No-sea-state
percentage

Outliers
percentage

BIAS

CMEMS NDBC CMEMS NDBC CMEMS NDBC CMEMS NDBC

1 0m-1.5m 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

2 1.5m-3m 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62

3 3m-6m 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

4 >6m 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

The final decision process for all algorithms selected for production was similarly held on a
collegiality basis, as defined in the previous subsection for the Altimeter Round Robin.
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6. Summary
The PVASR aimed at presenting the plan for the Round Robin exercise that determined the
algorithm(s) to be used in the generation of the official SS_cci product. The Round Robin
exercise has been separated according to the sensors used to produce the SWH
estimations: Synthetic Aperture Radars and Radar Altimeters.

Key statistics that were computed on the test datasets have been described in the document
and focus on internal evaluation and comparison with buoys and model data.

The RR for SAR shows for both algorithms quite similar results with difference of total score
of ~0.001%. DLR has a little better RMSE and Ifremer has slightly less filtered data
(No-Sea-State percentage). On a collegially basis, it was decided that both algorithms
should be used for processing, as the Ifremer algorithm is independently trained from model
data and the DLR algorithm can provide additional sea state parameters like wave periods or
partially integrated parameters.
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