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1 Introduction 

1.1 Executive summary 

The algorithm development targets the specific technical requirements identified in Task 1 of the project and 

expands upon the work initiated during phase 1. In phase 1, the Algorithm Theoretical Basis Document (ATBD) 

[AD4] was first developed, and current document represents the continuation of the development. The current 

activity focuses on refining and testing the algorithm blocks in the processing chain identified by the Earth 

Observing Science (EOS) team which includes the optical processing chain, SAR processing chain, fusion chain, 

and change detection. The optical pre-processing chain follows the same logical steps established in phase 1, but 

with adjustments aimed at improving both the quality of the optical composites generation and classification 

together with reducing computational costs. In the SAR processing chain, gaps in data distribution are 

highlighted, particularly due to the need to address the limited availability of the data back in time. This phase 

incorporates a deep learning network applied to multitemporal SAR data analysis. The Decision fusion chain is 

being extended to reduce and mitigate residual artifacts observed in the phase 1 products, ensuring better spatial 

and temporal consistency. Lastly, the change detection process is being refined to enhance feature selection and 

reduce computational burden, further improving efficiency in detecting LC changes across the study areas. This 

version of the document highlights several promising algorithms, but more concrete insights will be provided 

after in the next versions of the document. The activities developed on different extensions of phase 1 activities 

in two cycles can be summarized as follows:  

1. Re-processed Phase 1 historical products: generation of an improved version of historical products of 

Phase 1 through improvement of the enhanced sensor decision fusion, spatial and temporal 

harmonization modules of the processing chain. The starting point of the re-processing will be the 

intermediate products (from hereafter called meta products) consisting of the pixel-wise class-posterior 

probabilities generated by the SAR and Optical processing chains during Phase 1. Therefore, the SAR 

and Optical processing chain will not be run again on the already produced areas and years, minimizing 

costs, and allowing the team to better focus on the temporal consistency and change detection 

reliability, as well as on the new area and years that will be produced.  

2. Historical production on a new selected area: improved SAR and Optical processing chains will be 

defined and run on the new selected area in addition to the previously mentioned enhanced sensor 

decision fusion, spatial and temporal harmonization modules. Note that the same sensor decision fusion 

and the spatial and temporal harmonization modules will be used for both re-processing Phase 1 

products and for generating new Phase 2 products to generate compatible and consistent products.  

3. Historical (forward) production of year 2024 for all the considered areas: Phase 2 will develop a different 

concept used for the historical production when considering the extension to years following 2019. In 

Phase 1, a backward approach was taken, producing static maps for 2019, and then proceeding 

backward for the historical production. Instead, Phase 2 will consider a forward approach to produce 

historical maps that extend forward in time after the static maps of 2019. The production of the year 

2024 will be performed on the same historical areas considered in the backward approach. The 

backward and forward approaches will differ not only for the temporal direction, but also for the spatial 

resolution and data availability. Indeed, we can refer to the backward phase as the Landsat Era, 

characterized by the 30m spatial resolution and reduced data availability, and to the forward phase as 

the Sentinel Era, characterized by a 10m spatial resolution and a higher availability of satellite image 

data. This also leads to some differences in how the temporal correlation will be exploited, as in the 

Landsat Era more inconsistencies are expected in the meta products due to the use of different sensors 

and to lower data resolution, availability, and quality, requiring different levels of regularization 

between the two eras.  



 

Ref D2.2 - ATBD 

 
Issue Date Page 

1.1 16/12/2024 5 

 

1.2 Purpose and scope 

The ATBD outlines the algorithms used in the processing chain to generate the land cover products described in 

the PSD [AD2]. Its purpose is to provide a clear understanding of the processing workflow. ATBD version 1.0 

presents refining and testing of the best algorithm candidates identified for implementation. Feedback from 

ongoing analysis will be incorporated in the next version of the document, ensuring that the selected algorithms 

meet the technical requirements. 

 
The main blocks of computation can be identified as: 

• Optical pre-processing. 

• SAR pre-processing. 

• Training dataset. 

• Multi-sensor geolocation. 

• Optical data classification. 

• SAR data classification. 

• Decision fusion. 

• Multitemporal change detection and trend analysis. 

1.3 Applicable documents  
Ref. Title, Issue/Rev, Date, ID 

[AD1] CCI HR Technical Proposal 

[AD2] CCI_HRLC_Ph2-D1.2_PSD, latest version 

[AD3] CCI_HRLC_Ph2-D1.1_URD, latest version 

[AD4] CCI_HRLC_Ph1-D2.2_ATDB, latest version 

available at https://climate.esa.int/en/projects/high-resolution-land-cover/key-documents/ 

1.4 Acronyms and abbreviations 

3D-FCN   3-Dimensional - Fully Convolutional Network 
6S  Second Simulation of a Satellite Signal in the Solar Spectrum 
AC  Atmospheric correction 
AMI  Active Microwave Instrument 
AOT   Aerosol Optical Thickness 
ARD  Analysis Ready Data 
ASM  Angular Second Moment 
ATBD  Algorithm Theoretical Basis Document  
BEAST  Bayesian Estimator of Abrupt change, Seasonality & Trend 
BFAST  Breaks For Additive Seasonal & Trend Bayesian Online Change Point Detection 
BRDF  Bidirectional Reflectance Distribution Function 
BOCPD  Bayesian Online Change Point Detection 
CCI+  Climate Change Initiative Extension 
CFmask   C version of Function of Mask 
CGLS   Copernicus Global Land Service 
CGLS-LC100 Copernicus Global Land Service Dynamic Land Cover map at 100 m resolution 
CNN  Convolutional Neural Network 
ConvLSTM  Convolutional Long Short-Term Memory 
CRG          Climate Research Group 
CSI  Cloud Shadow Index 
DEM  Digital Elevation Model 
DL  Deep Learning 
DN  Digital Number 
DEM  Digital Elevation Model 
DSM  Digital Surface Model 
DuPLO  DUal view Point deep Learning architecture for time series classificatiOn 
ENL  Equivalent Number of Looks 
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ESA  European Space Agency 
ETM  Enhanced Thematic Mapper 
ETM+  Enhanced Thematic Mapper Plus 
FCN  Fully Convolutional Networks  
Fmask   Function of Mask 
FORCE  Framework for Operational Radiometric Correction for Environmental monitoring 
GLCM  Gray-Level Co-Occurrence Matrix 
GRNN  General Regression Neural Network  
GRD  Ground Range Detected 
GRU  Gated Residual Unit 
GSFC  NASA Goddard Space Flight Center 
GPS  Global Positioning System 
HLS  Harmonized Landsat Sentinel-2 
HR  High Resolution 
HRLC10  CCI High Resolution Land Cover Map at 10m resolution of 2019 
HRLC30  CCI High Resolution Land Cover Map at 30m resolution from 1990 onwards every 5 years 
HRLCC30 CCI High Resolution Land Cover Change Map at 30m resolution from 1990 onwards 
IP  Image Patch 
IW  Interferometric Wide Swath 
k-NN  k-Nearest Neighbours 
L-5/7/8/9 Landsat-5/7/8/9 
L1C  Sentinel-2 Level 1C Top of Atmosphere product 
L1  Landsat Level 1 Top of Atmosphere product 
L2A  Sentinel-2 Level 2A Surface Reflectance product 
L2  Landsat Level 2 Analysis Ready Data product 
LaSRC  Landsat Surface Reflectance Code 
LC  Land Cover 
LCC  Land Cover Change 
LEDAPS  Landsat Ecosystem Disturbance Adaptive Processing System 
LDP  Local Directional Pattern 
LPF  Low-Pass Filter 
LSP  Land Surface Phenology 
LSTM  Long Short Term Memory 
LUT  Look-Up Table 
MCMC  Markov Chain Monte Carlo 
MEaSUREs Making Earth Science Data Records for Use in Research Environments 
MGRS  Military Grid Reference System 
MHCVA  Multi-feature Hyper-temporal Change Vector Analysis  
MMSE  Minimum Mean-Square Error 
MODIS  Moderate Resolution Imaging Spectroradiometer 
MOLCA  Map Of LC Agreement 
MRLC  Medium Resolution Land Cover 
MSI  MultiSpectral Instrument 
MSS  Multispectral Scanner 
MSSI  Mean Structural Similarity Index  
MLCNN  Multi-Layer Perceptron Neural Network 
NASA  National Aeronautics and Space Administration 
NBR  Normalized Burn Ratio 
NDBI  Normalized Difference Build-up Index 
NDI  Normalized Difference Index 
NDSI  Normalized Difference Snow and Ice Index 
NDVI  Normalized Difference Vegetation Index 
NDWI  Normalized Difference Water Index 
NIR  Near InfraRed 
OA  Overall Accuracy 
OLI   Operational Land Imager 
PCA  Principal Component Analysis 
PSD  Product Specification Document 
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PSNR  Peak Signal-to-Noise Ratio 
RABASAR Ratio-Based Multi-temporal SAR Images Denoising 
RBF  Radial Basis Function 
RD  Range Doppler 
ReLu  Rectified Linear Unit 
RGB  Red, Green, and Blue optical bands 
RNN  Recurrent Neural Network 
S-1/2  Sentinel-1/2 
S2AC  Sentinel-2 Atmospheric Correction 
SAR  Synthetic Aperture Radar 
SAVI  Soil-Adjusted Vegetation Index 
SCL  Sentinel-2 L2A Scene Classification Layer 
SIFT  Scale-Invariant Feature Transform 
SITS  Satellite Image Time Series 
SLC  Scan-line corrector 
SNAP  Sentinel Application Platform 
SR  Surface Reflectance 
SRTM  Shuttle Radar Topography Mission 
SVM  Support Vector Machine 
SWIR  Short Wave InfraRed 
TempCNN Temporal Convolutional Neural Network 
TIRS  Thermal Infrared Sensor 
TM  Thematic Mapper 
TOA  Top Of Atmosphere 
TS  Time Series 
TSA  Time Series Analysis 
UEXT  Urban EXTent 
UTM  Universal Transverse of Mercator 
VH  Vertical-Horizontal polarization 
VHR  Very High Resolution 
VV  Vertical-Vertical polarization 
WSL  Weakly Supervised Learning 

1.5 List of Symbols 

∗  Convolution operation 
⊕  Dilation operation 
𝐗  Satellite image / multidimensional tensor 
𝐗(𝑏)  Grayscale image of satellite image band 𝑏 
𝑇  Number of images in SITS 
𝑡  Timestep of image in SITS 
𝐗𝑡   Satellite image tensor at timestep 𝑡 in SITS 
𝑾𝑔, 𝑾𝑥, 𝑾ρ  Weights of the 1 × 1 convolution layers 

(𝑖, 𝑘, 𝑡)  Pixel location in space and time 
(𝑖′, 𝑘′)  Pixel location in space in the neighborhood 𝒩 
𝑗  Imaginary unit 
𝒙  Feature vector / generic pixel in image 𝐗 
𝑥  Scalar / greyscale value of generic pixel in image 𝐗 
𝒙(𝑖, 𝑘)  Pixel spectral vector at location (𝑖, 𝑘) of image 𝐗 
𝑥(𝑖, 𝑘, 𝑏) Scalar value of band 𝑏 at location (𝑖, 𝑘) of image 𝐗 
𝑥(𝑖, 𝑘)  Scalar value at location (𝑖, 𝑘) of image 𝐗 
𝜎0(𝑖, 𝑘)  Backscattering coefficient at pixel (𝑖, 𝑘) 
𝑅(𝑖, 𝑘)  Slant range distance between the radar and the pixel (𝑖, 𝑘) 
ℎ𝑟(∙)  Matched Filter function 
𝑌  Year in multi-annual data 
𝑀  Number of years 
𝐵  Total number of bands 
𝐼  Width of satellite image 
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𝐾  Height of satellite image 
𝑊  Width of kernel 
𝐻  Height of kernel 
𝐻𝑎(∙)  Azimuth filter 
𝑊𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑(∙) Watershed function 
𝐴  Calibration constant or Scaling factor 
𝐶  Calibration factor / SVM parameter 
𝒞  Number of land cover classes 
𝑃  Total number of pixels 
𝐷  Total number of pixels in the neighborhood 
𝐹  Total number of features 
𝑆  Shape parameter 
ℱ  Fourier transform 
ℱ−1  Inverse Fourier transform 
𝒟  Training dataset 
𝑁  Number of training samples 
ℓ  Land cover label  
ℒ  Loss function 
𝒩  Neighborhood defined by the kernel size 
ℛ  Empirical risk 
𝛼(𝑖, 𝑘)  Local incidence angle for pixel (𝑖, 𝑘) 
𝝑  Model parameters vector 
ℋ  Hyperplane 
𝐹  Functional margin 
𝐺  Geometric margin 

𝒦(𝒙𝑖 , 𝒙𝑗) Kernel function 

𝜂2  Noise variance (constant) 
𝜉  Cluster of the k-NN algorithm / SVM slack variable 
𝑈(∙)  Energy function 
𝑉(∙)  Potential function 
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2 Processing chain overview 

The CCI HRLC project will deliver to the climate community regional land cover (LC) and land cover change (LCC) 

products over three areas in Africa Sahel band, Amazonia and Siberia URD [AD3]. LC maps will be provided at 

10m resolution for static map of 2019 (HRLC10) and at 30m resolution for the backward/forward historical record 

of LC and LCC from 1990 to 2024 every five years for HRLC30 and yearly forHRLCC30. The high-resolution (HR) 

classification legend as agreed by the Consortium is listed in URD [AD3]. The processing chain, outlined in Figure 

1 and Figure 2, was initially developed during phase 1 and operates independently without relying on pre-existing 

LC products. 

 

Figure 1. Block-based representation of the processing chain for the production of static HRLC10 maps. 

 

Figure 2. Block-based representation of the processing chain for the production of historical HRLC30 maps. 

 

Optical multispectral imagery is the main source of data as input for the classification. The optical processing 

chain is consistent with the possibility to work mainly with images at 10/30m resolution and generating an output 

at 10/30m, based on multitemporal multispectral data from S-2 and L-8/9 in the recent years and legacy L-5/7/8 

data in the past. The SAR processing chain will be implemented mainly for S-1 in the recent years, and ERS and 

ASAR data sets in the past (whenever and wherever HR mode data are available). Microwave data sets are useful 

for classes where SAR has proven to be accurate at medium resolution, such as water bodies and coastal lines, 

and the option to use SAR for urban areas is considered as well. The products obtained by the optical and the 

SAR processing chains will then be integrated in the data fusion module in order to produce the final HRLC 

products. This design choice of fusion at the decision level makes it possible to develop advanced and ad hoc 



 

Ref D2.2 - ATBD 

 
Issue Date Page 

1.1 16/12/2024 10 

 
processing approaches for optical, SAR, and multisensor data, while keeping the system modular and scalable. 

The output products will be then analysed in the multitemporal change detection and trend analysis block for 

identifying different change components to be used for the historical time series HRLC products every 5 years. 

Final high resolution land cover classification legend defined by the Climate Research Group (CRG) for the choice 

of the best performing classification algorithm is shown in Table 1. 

Table 1. Final high resolution HR Land Cover classification legend defined during the HRLC project activity.  

 

3 Optical pre-processing 

The optical pre-processing follows the same logical steps used in Phase 1, as reported in the ATDB [AD4]. 
Nonetheless, we plan on adjustments aimed at improving the quality of the pre-processing chain output (i.e., the 
optical composites), and the computational costs associated with it. The following will describe the theoretical 
basis for the optical pre-processing chain, with additional details on the proposed improvements under 
investigation and the related motivations. 
 

 

Figure 3. Optical pre-processing chain. 

Pre-processing operations are intended to correct for sensor- and platform-specific radiometric and geometric 
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distortions of data and harmonization. Radiometric corrections may be necessary due to variations in scene 
illumination and viewing geometry, atmospheric conditions, and sensor noise and response. Each of these will 
vary depending on the specific sensor and platform used to acquire the data and the conditions during data 
acquisition. Cloud coverage is a systematic issue related to optical imagery and it requires specific processing 
aimed at precisely locating cloud and cloud shadow pixels, with possible restoring steps to recover spectral 
information over occluded pixel locations. All the steps needed to prepare optical images for classification, see 
Figure 3, are detailed in the following sections. 

3.1 Atmospheric Correction and Cloud / Cloud Shadow Detection 
The input data to the processing chain are the atmospherically corrected S-2 Collection 1 data (i.e., L2A products) 
and atmospherically corrected L-5/7/8/9 Collection 2 images (i.e., L2 products), i.e., Surface Reflectance (SR) 
products. Although the data used in the processing chain of Phase 1 are already atmospherically corrected, in 
the following subsections we described the algorithms used to generate such products as well as the cloud and 
shadows masks. In Phase 2, an alternatives to the original L2A and L2 product are currently being considered, 
which are based on FORCE [1] and HLS [2], for the production in the Sentinel Era (2015 onward), as they provide 
frameworks for seamlessly integrating Landsat and Sentinel-2 data. They also provide alternative cloud detection 
algorithms that are being compared with current operational methodologies. Therefore, some details are needed 
to understand the key differences of these approaches. 

3.1.1 Sentinel-2 – Sen2cor 

The precomputed SR products in L2A are generated using Sen2cor. The Sen2cor processor allows calculation of 
atmospherically corrected SR from Top Of Atmosphere (TOA) reflectance images available in L1C products. S-2 
atmospheric correction (S2AC) is based on an algorithm proposed in [3]. The method performs atmospheric 
correction based on the LIBRADTRAN radiative transfer model presented in [4]. 
The model is run once to generate a large LUT of sensor-specific functions (required for the AC: path radiance, 
direct and diffuse transmittances, direct and diffuse solar fluxes, and spherical albedo) that accounts for a wide 
variety of atmospheric conditions, solar geometries and ground elevations. This database is generated with a 
high spectral resolution (0.6 nm) and then resampled with S-2 spectral responses. This LUT is used as a simplified 
model (running faster than the full model) to invert the radiative transfer equation and to calculate the SR. All 
gaseous and aerosol properties of the atmosphere are either derived by the algorithm itself or fixed to an a priori 
value. 
S2AC employs Lambert's reflectance law. Topographic effects can be corrected during the surface retrieval 
process using an accurate Digital Elevation Model (DEM). S2AC accounts for and assumes a constant viewing 
angle per tile (sub-scene). The solar zenith and azimuth angles can either be treated as constant per tile or can 
be specified for the tile corners with a subsequent bilinear interpolation across the scene. 
The Scene Classification (SCL) algorithm allows the detection of clouds, snow and cloud shadows and generation 
of a classification map, which consists of three different classes for clouds (including cirrus), together with six 
different classifications for shadows, cloud shadows, vegetation, not vegetated, water and snow. Cloud screening 
is applied to the data in order to retrieve accurate atmospheric and surface parameters during the atmospheric 
correction step. The L2A SCL map can also be a valuable input to the optical processing chain for further 
processing steps or data analysis (e.g., composite generation). 
The SCL algorithm uses the reflective properties of scene features to establish the presence or absence of clouds 
in a scene. It is based on a series of threshold tests that use as input the following: TOA reflectance of several S-
2 spectral bands, band ratios and indexes like Normalised Difference Vegetation Index (NDVI) and Normalised 
Difference Snow and Ice Index (NDSI). For each of these threshold tests, a level of confidence is associated. It 
produces at the end of the processing chain a probabilistic cloud mask quality indicator and a snow mask quality 
indicator. The most recent version of the SCL algorithm includes also morphological operations, usage of auxiliary 
data like DEM and LC information and exploit the parallax characteristics of S-2 MSI instrument to improve its 
overall classification accuracy. 
The S-2 SR products are used as the input to the pre-processing chain for the static HRLC10 maps production, 
and the associated SCL is used as starting point for the cloud and cloud-shadow masks definition. 

3.1.2 Landsat 5/7/8 – LEDAPS, LaSRC 

L-5 TM and L-7 ETM+ Collection 2 SR products are generated using the Landsat Ecosystem Disturbance Adaptive 
Processing System (LEDAPS) algorithm (version 3.4.0), a specialized software originally developed through a 
National Aeronautics and Space Administration (NASA) Making Earth System Data Records for Use in Research 
Environments (MEaSUREs) grant by NASA Goddard Space Flight Center (GSFC) and the University of Maryland 
[5]. The software applies Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction 
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routines to L1 data products. Water vapor, ozone, geopotential height, aerosol optical thickness, and digital 
elevation are input with Landsat data to the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) 
radiative transfer models to generate TOA reflectance, SR, TOA brightness temperature, and masks for clouds, 
cloud shadows, adjacent clouds, land, and water.  
L-8/9 OLI Collection 2 SR data are generated using the Landsat Surface Reflectance Code (LaSRC) (version 1.5.0), 
which makes use of the coastal aerosol band to perform aerosol inversion tests, uses auxiliary climate data from 
MODIS, and a unique radiative transfer model [6]. LaSRC hardcodes the view zenith angle to “0”, and the solar 
zenith and view zenith angles are used for calculations as part of the atmospheric correction. 
While both the LEDAPS and LaSRC algorithms produce similar SR products, the inputs and methods to do so 
differ. Table 1 below illustrates both. 

Table 2. Differences between Landsat-5/7 and Landsat-8/9 surface reflectance algorithms. 

Parameter Landsat-5/7 (LEDAPS) Landsat-8/9 (LaSRC) 

Global Coverage Yes Yes 

TOA Reflectance Visible (Bands 1–5,7) Visible (Bands 1–7, 9 OLI) 

TOA Brightness 
Temperature 

Thermal (Band 6) Thermal (Bands 10 & 11 TIRS) 

SR Visible (Bands 1-5, Band 7) Visible (Bands 1-7) (OLI only) 

Thermal bands used 
in Surface Reflectance 
processing 

Yes 
(Brightness temperature Band 6 is 
used in cloud estimation) 

No 

Radiative transfer model 6S Internal algorithm 

Thermal correction level TOA only TOA only 

Thermal band units Kelvin Kelvin 

Pressure NCEP Grid 
Surface pressure is calculated 
internally based on the elevation 

Water vapor NCEP Grid MODIS CMA 

Air temperature NCEP Grid Not Used 

DEM ETOPO5 (CMGDEM) ETOPO5 (CMGDEM) 

Ozone OMI/TOMS MODIS CMG Coarse resolution ozone 

AOT 
Correlation between chlorophyll 
absorption and bound water 
absorption of scene 

Internal algorithm 

Sun angle Scene center from input metadata Scene center from input metadata 

View zenith angle From input metadata Hard-coded to "0" 

Undesirable zenith angle 
correction 

SR not processed when solar zenith 
angle 
> 76 degrees 

SR not processed when solar zenith 
angle > 76 degrees 

Pan band processed No No 

XML metadata Yes Yes 

Top of Atmosphere 
Brightness Temperature 
calculated 

Yes (Band 6 TM/ETM+) Yes (Band 10 & 11 TIRS) 

Cloud mask CFmask (v3.3.1) CFmask (v3.3.1) 

Data format INT16 INT16 

Fill values 0 0 

QA bands 

Cloud 
Adjacent cloud 
Cloud shadow 
DDV 
Fill 
Land water 
Snow 
Atmospheric opacity 

Cloud 
Adjacent cloud 
Cloud shadow 
Aerosols 
Cirrus 
Aerosol In 

 
Identification of clouds, cloud shadows in optical images is necessary. The C version of Fmask (CFmask) v3.3.1 
has been used in Collection 2 to accomplish these tasks for use with images from L-5/7/8/9 [7]. CFmask is a multi-

https://www.usgs.gov/land-resources/nli/landsat/landsat-surface-reflectance-quality-assessment
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pass algorithm that uses decision trees to prospectively label pixels in the scene; it then validates or discards 
those labels according to scene-wide statistics. It also creates a cloud shadow mask by iteratively estimating 
cloud heights and projecting them onto the ground. Fmask algorithm can also be used with Sentinel-2 images, 
and the most recent Fmask v4.6 [8] implements strategies for exploiting the parallax effect as proposed in [9]. 

3.1.3 Sentinel-2 for HRLC10 Map – SCL Cloud Masks Improvement 

Cloud and cloud shadow detection is based on cloud and cloud-shadow masks provided with the S2A SCL (for S-
2) and Fmask (for Landsat). The Overall Accuracy (OA) of cloud and shadow masks provided by the S2A SCL (84%) 
is on average lower than the one provided by Fmask (90%) [10]. Therefore, the S2A SCL masks should be further 
enhanced to achieve the required accuracy. To this end, during Phase 1 we adopted two strategies, one for cloud 
detection and one for cloud shadow detection and removal. Let {𝐗1, 𝐗2, … , 𝐗𝑇} be the considered satellite image 
TS (SITS), which includes the 𝑇 optical images acquired over a season. The multitemporal pattern associated to 
the pixel (𝑖, 𝑘) of the SITS can be defined as {𝒙1(𝑖, 𝑘), 𝐱2(𝑖, 𝑘), … , 𝒙𝑇(𝑖, 𝑘)}, where 𝒙𝑡(𝑖, 𝑘) =
[𝑥𝑡(𝑖, 𝑘, 1), 𝑥𝑡(𝑖, 𝑘, 2), … , 𝑥𝑡(𝑖, 𝑘, 𝐵)]

⊤ represents the column vector of 𝐵 spectral values of the pixel (𝑖, 𝑘) in the 
image 𝑋𝑡 of the SITS. For cloud detection, we compute the cloudless background Blue image 𝐗𝐵𝑔  for each season 
[11]: 

𝑥𝐵𝑔(𝑖, 𝑘) = Quantile0.25({𝑥1(𝑖, 𝑘, 𝐵𝑙𝑢𝑒), 𝑥2(𝑖, 𝑘, 𝐵𝑙𝑢𝑒), … , 𝑥𝑇(𝑖, 𝑘, 𝐵𝑙𝑢𝑒)}) 

The difference between the Blue bands of each image from the TS and the background image is computed. The 
pixels in the difference image are then clustered into 3 clusters. To understand which from the obtained clusters 
belong to cloud cover, the mean of each cluster is compared with the blue band mean of the cloudy pixels overall 
image. Finally, we merge the obtained cloud mask with the original S2A SCL mask. Note that this strategy is 
performed only for tiles with a sufficiently large cloud cover to properly model the clusters. Figure 4 shows the 
flowchart of the considered strategy.  
 

 

Figure 4. Flowchart of the Sen2cor cloud mask improvement 

In order to detect and remove cloud shadows, the Cloud Shadow Index (CSI) [12] can be used, which is based on 
the physical reflective characteristic of cloud shadow. The 𝐂𝐒𝐈𝑡 image of 𝐗𝑡  for pixel (𝑖, 𝑘) is computed by 
combining information provided by the NIR and SWIR bands: 

𝑐𝑠𝑖𝑡(𝑖, 𝑘) =
1

2
(𝑥𝑡(𝑖, 𝑘, 𝑁𝐼𝑅) + 𝑥𝑡(𝑖, 𝑘, 𝑆𝑊𝐼𝑅)) 

To avoid confusion between shadows and water bodies, as they both have very similar spectral signatures 
associated with their low reflectance, an additional condition including shorter wavelengths, i.e., the blue band 
reflectance, should also be analysed. Thus, the cloud shadow is identified in areas where the following conditions 
are fulfilled: 

𝑐𝑠𝑖𝑡(𝑖, 𝑘) < min
(𝑖,𝑘)

𝑐𝑠𝑖𝑡(𝑖, 𝑘) + 𝜆1 (mean
(𝑖,𝑘)

𝑐𝑠𝑖𝑡(𝑖, 𝑘) − min
(𝑖,𝑘)

𝑐𝑠𝑖𝑡(𝑖, 𝑘)) 

𝑥𝑡(𝑖, 𝑘, 𝐵𝑙𝑢𝑒) < min
(𝑖,𝑘)

𝑥𝑡(𝑖, 𝑘, 𝐵𝑙𝑢𝑒) + 𝜆2 (mean
(𝑖,𝑘)

𝑥𝑡(𝑖, 𝑘, 𝐵𝑙𝑢𝑒) − min
(𝑖,𝑘)

𝑥𝑡(𝑖, 𝑘, 𝐵𝑙𝑢𝑒)) 

Coefficients were fine-tuned: 𝜆1  = 1/2 and 𝜆2 = 1/4. Note that this approach is performed only for tiles where 
there is enough cloud cover, and the cloud cover has on average a large reflectance. Figure 5 shows the flowchart 
of the considered strategy. 



 

Ref D2.2 - ATBD 

 
Issue Date Page 

1.1 16/12/2024 14 

 

 

Figure 5. Flowchart of the Sen2cor cloud shadow mask improvement and removal 

In Phase 2, this approach is being re-evaluated against the updated operational algorithm for the S-2 Collection 
2 masks and the newer version of Fmask. A comparison will be performed using the recent multi-temporal global 
benchmark dataset, named CloudSEN12 [13], for cloud and cloud shadow detection with S-2. This dataset 
provides 49,250 S-2 image patches (IPs) with different annotation types: (i) 10,000 IPs with high-quality pixel-
level annotation, (ii) 10,000 IPs with scribble annotation, and (iii) 29,250 unlabelled IPs. The labelling phase was 
conducted by 14 domain experts using a supervised active learning system. A rigorous four-step quality control 
was designed to guarantee high quality in the manual annotation phase. Furthermore, CloudSEN12 ensures that 
for the same geographical location, users can obtain multiple IPs with different cloud coverage: cloud-free (0%), 
almost-clear (0–25%), low-cloudy (25–45%), mid-cloudy (45–65%), and cloudy (>65%), which ensures scene 
variability in the temporal domain. Therefore, CloudSEN12 provides a reliable benchmark for precisely evaluating 
different cloud detection algorithms. 

3.1.4 Harmonized Landsat Sentinel-2 data 

Since the launch of the first S-2 satellite, both S-2 and Landsat missions acquired large volume of data over the 
globe, potentially increasing the temporal density of the acquisitions that can be considered for our analysis. 
However, the integration of the data of these two missions comes with its challenges related to the different 
characteristics of the sensors onboard the different satellites. For this reason, during Phase 1 these data were 
used separately to generate the intermediate results and combined at decision-fusion/cascade level (i.e., HRLC30 
2015-2019). 
In the last few years, thanks to the more mature state of both Landsat and S-2 missions, international 
collaborations delivered a new dataset fully focused on a different processing of the Landsat and S-2 data to 
provide seamless products that bridge the gap between the two missions, the Harmonized Landsat and Sentinel-
2 (HLS) dataset [2]. HLS is a NASA initiative aiming to produce a seamless surface reflectance record from the 
Operational Land Imager (OLI) and Multi-Spectral Instrument (MSI) aboard L-8/9 and S-2A/B remote sensing 
satellites, respectively. The HLS products are created from a set of algorithms: 

1. Atmospheric correction: LaSRC is used for both Landsat and Sentinel-2 Level 1 acquisitions. 
2. Cloud and cloud-shadow masking: Fmask version 4 is used for both missions. 
3. Geographic co-registration and common gridding: Sentinel-2 bands are resampled to 30m, while 

Landsat bands are reprojected and resampled to match the Sentinel 2 MGRS tiling grid. 
4. Bidirectional Reflectance Distribution Function (BRDF) normalization: The view angle effect on surface 

reflectance is noticeable even for narrow field-of-view sensors like Landsat and S-2, especially where 
forward scattering and backward scattering are concerned. HLS normalizes the view angle effect in the 
Landsat/S-2 common bands and the S-2 red-edge bands using the c-factor technique and the global 
coefficients provided in [14], [15]. 

5. Bandpass adjustment: The small differences between MSI and OLI equivalent spectral bands are 
adjusted. The OLI spectral bands are used as reference, to which the MSI spectral bands are adjusted. 



 

Ref D2.2 - ATBD 

 
Issue Date Page 

1.1 16/12/2024 15 

 
The bandpass adjustment is a linear transformation between equivalent spectral bands (see Table 3). 

With four sensors currently in this virtual constellation, HLS provides observations once every three days at the 
equator and more frequently with increasing latitude. 
This dataset is currently under study for being used in the production of Phase 2 HRLC30 and HRLCC30 maps. The 
use of this dataset can be particularly beneficial to produce historical maps at 30m resolution ranging from 2019 
to 2024 for HRLCC30 for all areas, for the HRLC30 2015-2019-2024 maps of the new extended Amazonia area 
PSD [AD2] and for the updated HRLC30 2024 maps for historical areas in Siberia and Africa Sahel. Note that this 
dataset contains only L-8/9 data, thus this can only be used from 2013 onward.  
 

Table 3. Coefficients of linear regression used to adjust Sentinel-2A/B MSI to Landsat 8/9 OLI. 

HLS Band Name OLI Band Name MSI Band Name 
Sentinel-2A Sentinel-2B 

Slope Offset Slope Offset 

Coastal Aerosol 1  0.9959 -0.0002 0.9959 -0.0002 

Blue 2 2 0.9778 -0.0040 0.9778 -0.0040 

Green 3 3 1.0053 -0.0009 1.0075 -0.0008 

Red 4 4 0.9765 0.0009 0.9761 0.0010 

NIR 5 8A 0.9983 -0.0001 0.9966 0.0000 

SWIR 1 6 11 0.9987 -0.0011 1.0000 -0.0003 

SWIR 2 7 12 1.0030 -0.0012 0.9867 0.0004 

 

3.1.5 Framework for Operational Radiometric Correction for Environmental monitoring 

As an alternative solution to the use of pre-computed SR products, we are investigating the use of FORCE 
(Framework for Operational Radiometric Correction for Environmental monitoring) [1]. It provides an all-in-one 
processing engine that can compute SR products as well as cloud and cloud shadow masks for both Landsat and 
S-2 images in a unified framework. The algorithm for cloud detection is based on Fmask modified with the latest 
improvements (e.g., S-2 parallax effect exploitation). FORCE provides a tool for generating a dataset that 
integrates Landsat and Sentinel-2 acquisitions; thus, it is a direct competitor for HLS. FORCE AC [16] resembles 
the techniques used for Landsat data. Radiometric correction includes radiative-transfer-based atmospheric 
correction. Aerosol optical depth is estimated over dark water and dense dark vegetation objects using multiple 
scattering. Water vapor is estimated for each S-2 pixel; auxiliary data are used for Landsat. Topographic 
correction is performed with an enhanced C-correction. The C-factor is estimated for each pixel in the image and 
then propagated through the spectrum using radiative transfer theory. Three kernels of increasing size are used 
to approximate the background reflectance for environment correction. Nadir BRDF-adjusted reflectance is 
retrieved using a global set of MODIS-derived BRDF kernel parameters. Figure 6 shows the flowchart of FORCE 
for the generation of Analysis Ready Data (ARD), i.e., SR, and the related cloud masks. 

 

Figure 6. Flowchart of FORCE AC, cloud detection and generation ARD (i.e., SR) products for Landsat and S-2 data. 
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Figure 7. Example of Data Cube of L-7/8 and S-2 Level 2 SR as generated by FORCE.  

3.2 Spectral Filtering 
The spectral filtering aims to detect and remove the outlier present in the optical images. To this end, in this step 
we discard the reflectance values higher than the 0.999 quantile and lower than the 0.001 quantile of each 
spectral band. All the images considered in the experiments have cloud coverage less than 40%. In order to 
mitigate any possible effect of clouds and shadow present on the image, they have been detected by using the 
available cloud masks and discarded from the quantitative evaluation. S-2 bands at 60m resolution are discarded, 
and 20m resolution bands are up-sampled to 10m resolution by replication. 

3.2.1 Landsat-7 SLC-off 

The scan-line corrector (SLC) of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor failed in 2003, 
resulting in about 22% of the pixels per scene not being scanned. The SLC failure has seriously limited the 
scientific applications of ETM+ data. This problem affects the considered composite strategy when the available 
acquisitions are scarce and come mainly or only from L-7 (e.g., Africa 2005 and 2010). To avoid affecting the 
composites and the classification (i.e., striping in the composites and in the land-cover maps), a gap-filling 
strategy based on interpolation has been used to fill in the values of the missing pixels. While accurate spatial 
information is not retrieved, the subsequent composite strategy is able to partially retrieve it by exploiting the 
multitemporal acquisitions. Even though the spatial detail might be reduced, this strategy results in improved 
spectral uniformity and consistency across pixels in the composite. This improved the performance of the 
classifier, which uses the spectral bands as its primary features. This step is currently under upgrade in Phase 2 
to improve the radiometric and geometric properties of the gap-filling operator. We are considering images 
acquired just before and after the image of interest to provide spatial information within the affected stripe. 
Then, we will consider approaches reconstruct the stripe based on the radiometric properties of the local 
neighbourhood in the image of interest. An example of such a strategy in the literature is IROBOT [16],  a method 
that utilizes the Neighbourhood Similar Pixel Interpolator to fill in missing values and leverages the time-series 
information to reconstruct high-resolution images. Therefore, by combining the spatial information of close 
acquisitions and the radiometric properties of the image of interest, we expect to be able to further improve the 
reconstruction quality. Figure 8 shows a qualitative example of gap filling that can be obtained with IROBOT. 
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Figure 8. Comparison example from [16] of different gap-filling methods. (a) Landsat 7 OLI image. (b) The reconstruction 
image of IROBOT method proposed in [16]. (c) The reconstruction image of Linear-ROBOT method. (d) The reconstruction 
image of IDW-ROBOT method. 

3.3 Composite Generation 
When working at large scale, it is necessary to harmonize the TS of images acquired over different tiles which are 
characterized by different lengths and are acquired at different times. This is mainly due to the irregular cloud 
coverage (which hampers the use of some images of the time-series) and the different orbit acquisitions 
(different temporal sampling). To solve this problem, in the pre-processing step we generate monthly, seasonal 
and annual composites. This condition allows us to mitigate cloud occlusions problem and minimize the 
processing resources. To this end, we consider a statistic-based approach that computes the median value for 
each pixel. This approach can generate consistent results at large scale in an automatic way by sharply reducing 
the spatial noise. Let {𝐗1, 𝐗2, … , 𝐗𝑇} be the considered SITS which includes the optical images acquired over a 
month, a season or the whole year (i.e., according to the sensor and the considered study area). The pixel (𝑖, 𝑘) 
of the composite 𝐗𝐶𝑜𝑚  is generated by computing the band-wise median of the cloud-free multispectral pixels 
of the SITS as follows: 

𝑥𝐶𝑜𝑚(𝑖, 𝑘, 1) = Median({𝑥1(𝑖, 𝑘, 1), 𝑥2(𝑖, 𝑘, 1), … , 𝑥𝑇(𝑖, 𝑘, 1)}) 
𝑥𝐶𝑜𝑚(𝑖, 𝑘, 2) = Median({𝑥1(𝑖, 𝑘, 2), 𝑥2(𝑖, 𝑘, 2), … , 𝑥𝑇(𝑖, 𝑘, 2)}) 

⋮ 
𝑥𝐶𝑜𝑚(𝑖, 𝑘, 𝐵) = Median({𝑥1(𝑖, 𝑘, 𝐵), 𝑥2(𝑖, 𝑘, 𝐵), … , 𝑥𝑇(𝑖, 𝑘, 𝐵)}) 

Cloud, cloud shadow and snow mask pixels are ignored during median computation. Table 4 summarizes the kind 
of composite generated per study area according to different optical sensors. Due to the increased revisit time 
of S-2 (5 days) with respect to Landsat (16 days), denser time-series are available for 2019 that can be used to 
generate monthly composites. In the case of Sentinel data for HRLC10 over Amazonia and Africa, we computed 
12 monthly composites. Due to dense cloud coverage over some regions, each monthly composite is computed 
using a buffer of 15 days around the considered month (i.e., February is computed with data from 15th Jan to 15th 
Mar). This conservative choice allows us to sharply reduce the probability of having cloudy pixels in the TS. For 
S-2 data over Siberia, we generate yearly composites due to heavy cloud and snow coverage problems which 
hampered the use of images acquired for most of the year. Hence, the Siberian yearly composite is computed as 
the median of data acquired in July and August.  
In the case of Landsat data for HRLC30, we similarly consider yearly composite for Siberia, which is computed as 
the median of data acquired between April and September. Finally, for Landsat data over Amazonia and Africa 
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we compute four seasonal composites considering the optical data acquired in the following months: (i) January 
– March, (ii) April – June, (iii) July- September, and (iv) October – December.  
For the new products to be generated in Phase 2, both Landsat and S-2 images (within HLS or FORCE) will be 
considered for the composite generation over the extended historical area in Amazonia and the historical in 
Africa and Siberia maps for the period 2019-2024. This allows us to have an even denser time series, thus 
significantly improving the composite quality over the areas. 
 

Table 4. Composites generated for the different study areas according to the availability of cloud free optical images. 

Area Sentinel 2 Landsat 5/7/8 

Siberia Yearly (July - August) Yearly (April – September) 

Amazonia 12 Monthly Composites 4 Seasonal Composites 

Africa 12 Monthly Composites 4 Seasonal Composites 

 

3.3.1 Additional compositing strategies 

In Phase 2, alternatives to the Phase 1 band-wise median approach are being investigated. The main drawbacks 
of the median approach of Phase 1 are it being computationally demanding and it not always generating 
representative values of the temporal range considered. Indeed, the median values of each band may not belong 
to the same acquisition, thus the temporal mosaic would not depict a real spectral signature for the temporal 
range considered. A solution to this problem is to change the approach to the selection of the most 
representative image for each pixel. Such an approach guarantees that each pixel in the temporal mosaic reports 
a real spectral signature. Then, the issue we need to address is the selection of the representatives. A common 
approach is the medoid [17], widely used for Landsat and more recently also for S-2 data [18]. The medoid 
computes the representative object of a data set whose average dissimilarity to all the objects in the data set is 
minimal. Therefore, retaining the notation used before, we could use it to compute the composite 𝐗𝐶𝑜𝑚  for pixel 
(𝑖, 𝑘) from 𝑇 images as follows: 

𝒙𝐶𝑜𝑚(𝑖, 𝑘) = argmin
𝐱t′(𝑖,𝑘)

∑𝑑(𝒙𝑡(𝑖, 𝑘), 𝒙t′(𝑖, 𝑘))

𝑇

𝑡=1

, 

where 𝑑(𝒙𝑡(𝑖, 𝑘), 𝒙t′(𝑖, 𝑘)) is a dissimilarity measure, e.g., the Euclidean distance: 

𝑑(𝒙𝑡(𝑖, 𝑘), 𝒙t′(𝑖, 𝑘)) = √∑[𝑥𝑡(𝑖, 𝑘, 𝑏) − 𝑥𝑡′(𝑖, 𝑘, 𝑏)]
2

𝐵

𝑏=1

. 

Another alternative to median or medoid compositing strategies is the use of the Time Series Analysis (TSA) 
approach proposed in [1], depicted in Figure 9. The time series can be interpolated / smoothed at custom time 
steps. Currently available are linear interpolation, moving average filter, and Radial Basis Function (RBF) 
ensembles. TSA not only provides a tool for processing SITS, but also strategies for aggregating the temporal 
information over predefined temporal ranges. The time series can be “folded” by year, quarter, month, week or 
day, which perfectly align with our requirements for monthly, seasonal (i.e., quarterly) and yearly composites. 
The time series can be folded with any available statistics, e.g. mean or median. TSA approach is already part of 
the FORCE [1] suite of utilities, providing a convenient workspace for all the pre-processing operations. 
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Figure 9. Flowchart of the TSA module of FORCE. 

3.4 Cloud and cloud shadow restoration 
Cloud and cloud shadow restoration is an important step in the optical image pre-processing part. Although we 
consider the composites instead of original time-series of images, missing information due to poor atmospheric 
conditions (e.g., thick clouds and related shadows) or defective sensors may be present in the composites. In the 
literature, a large effort has been devoted to solving this problem. However, to properly recover missing 
information, sophisticated and usually computationally intensive techniques should be used, increasing 
significantly the computational complexity of the pre-processing part. Instead of considering computationally 
demanding approaches, a simple and effective linear temporal gap filling was employed. In this method the 
missing information is restored as the average of the spectral values acquired in the previous and the following 
images in the time series. If clouds are present in the first or last image in SITS, the second or the one before last 
image are considered, respectively. 

4 SAR pre-processing 

The Synthetic Aperture Radar (SAR) pre-processing chain aligns with Phase 1 production steps, as documented 

in the relevant ATDB deliverable [AD4]. A 10m resolution static map was generated using Sentinel-1 data, while 

mapping land cover (LC) back to 1990 at 30m resolution incorporated SAR data from Sentinel-1, ERS-1/2, and 

ENVISAT ASAR. Sentinel-1's Interferometric Wide Swath (IW) mode data has a resolution of 20x22m with 10x10m 

pixel spacing and a 12-day revisit period since 2015. 

For historical LC mapping, SAR Level 1 Precision Image Products (SAR_IMP_1P) from ERS-1/2 [19] and ASAR IM 

Precision Level 1 (ASA_IMP_1P) from ENVISAT [20] were used. Both products provide multi-look, ground-range 

images with specific corrections to ensure consistency with ERS-SAR data. 

Gaps in data coverage from 1990 to 2015 posed significant challenges, requiring careful data selection for 

consistent mapping. Data gaps particularly affected Amazonia (2015, 2010, 1990), Africa (2015, 1990), and 

Siberia (2015, 2000, 1990). The Table 5 summarizes the distribution of SAR datasets used for producing historical 

maps in the three target regions identified in Phase 1: Amazonia, Africa, and Siberia. 

Table 5. SAR data availability in the three areas identified in Phase 1—Amazonia, Africa and Siberia—for the production of 

the historical products at 30m. 

Area Year Date range Season SAR historical product # images 

Amazonia 2005 01.01 - 03.31 Winter ENVISAT_ASA.IMP.1P 466 
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Area Year Date range Season SAR historical product # images 

Amazonia 2000 01.01 - 03.31 Winter ERS_SAR.IMP.1P 396 

Amazonia 1995 04.01 - 06.30 Spring ERS_SAR.IMP.1P 421 

Africa 2010 01.01 - 03.31 Winter ENVISAT_ASA.IMP.1P 274 

Africa 2005 07.01 - 09.30 Summer ERS_SAR.IMP.1P 350 

Africa 2000 07.01 - 09.30 Summer ERS_SAR.IMP.1P 350 

Africa 1995 04.01 - 06.30 Spring ERS_SAR.IMP.1P 323 

Siberia 2010 07.01 - 09.30 Summer ERS_SAR.IMP.1P 895 

Siberia 2005 07.01 - 09.30 Summer ENVISAT_ASA.IMP.1P 315 

Siberia 1995 07.01 - 09.30 Summer ERS_SAR.IMP.1P 548 

 

To process and analyze the available SAR data, custom codes were developed in the Python programming 

language. These codes were deployed using Docker containers, enabling automated, platform-independent 

execution across various operating systems. This approach ensured consistent and efficient processing 

workflows, regardless of the underlying computing environment. 

 

 

Figure 10. Block diagram illustrating the processing chain used for the pre-processing of SAR data: Sentinel-1 for generating 

the static map at a 10m resolution, and ERS/ENVISAT for producing historical maps at a 30m resolution. 

The pre-processing involves several key steps, shown in block scheme in Figure 10: 

• Orbit File application: Corrects satellite position and velocity for accurate geolocation using precise 

orbit data. 

• Thermal Noise removal (for Sentinel-1 only): Enhances backscatter reliability by removing noise, 

especially from the cross-polarization channel. 

• Border Noise removal (for Sentinel-1 only): Applies a threshold-based masking approach using a 

NoiseMak. 

• Radiometric calibration: Converts SAR signals to calibrated backscatter values, enabling comparability 

across sensors. 

• Geometric Terrain correction: Uses Range Doppler (RD) techniques with a Digital Elevation Model 

(DEM) for accurate geographic representation. 

• Despeckle filtering: Reduces speckle noise, improving clarity while preserving details. 

 

The initial processing involves orbit file application, integrating satellite trajectory data for geolocation tasks 

using interpolation methods like cubic splines or Lagrange interpolation to account for irregular time spacing 

[21]. 
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The range compression uses a matched filter: 

𝑠𝑐(𝑡) = 𝑠(𝑡) ∗ ℎ𝑟(𝑡) 

where 𝑠𝑐(𝑡) is the range-compressed signal, 𝑠(𝑡) is the received SAR signal, and ℎ𝑟(𝑡) is the matched filter 

function. The azimuth compression uses Fourier transforms: 

𝑆𝑐(𝑓) = ℱ{𝑠𝑐(𝑡)},     𝑠𝑓(𝑡) = ℱ−1{𝑆𝑐(𝑓) ⋅ 𝐻𝑎(𝑓)} 

With 𝐻𝑎(𝑓) as the azimuth matched filter. The final SAR image 𝑿 is reconstructed as 𝑿 = |𝑠𝑓(𝑡)| 

Thermal noise correction is performed using: 

𝑥𝑡ℎ𝑒𝑟𝑚𝑎𝑙_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖, 𝑘) = 𝑥(𝑖, 𝑘) − 𝑛𝑇(𝑖, 𝑘), 

Where 𝑥𝑡ℎ𝑒𝑟𝑚𝑎𝑙_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖, 𝑘) is the noise-corrected pixel intensity at location (𝑖, 𝑘); 𝑥(𝑖, 𝑘) is the SAR pixel 

intensity (output of the orbit file application step) at location (𝑖, 𝑘), and 𝑛𝑇(𝑖, 𝑘) represents the thermal noise 

estimate for that pixel. For SAR data like Sentinel-1, thermal noise removal often involves using noise vectors 

from the provided metadata noise.xml file [22]. Effective noise removal normalises the backscatter signal across 

the entire scene, crucial for multi-swath acquisitions to minimise discontinuities between sub-swaths. [23]. 

Tools like SNAP facilitate thermal noise removal for Sentinel-1 data by providing a specialised operator [24], 

capable of updating product annotations and handling Look-Up Tables (LUTs) for calibrated noise profiles. This 

enhances image coherence and quality for various remote sensing applications. 

To remove border noise, a threshold-based masking approach is commonly used [25]. The basic concept is to 

set the pixel values at the borders of the SAR image (where the noise is prevalent) to zero or to interpolate the 

values based on neighbouring pixels. To remove border noise in Sentinel-1, the NoiseMask included in the 

metadata, which flags areas affected by noise, is utilised. SNAP provides algorithms to remove border noise, 

enhancing overall image quality by filtering out low-intensity artifacts at the edges [26]. This improvement is vital 

for applications such as land cover mapping, where edge effects can lead to inaccuracies 

Radiometric calibration converts the corrected data 𝒙𝒃𝒐𝒓𝒅𝒆𝒓𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅(𝒊, 𝒌) to the backscattering coefficient 

𝜎0(𝑖, 𝑘) [22], representing the radar reflectivity of target surfaces: 

𝜎0(𝑖, 𝑘) =
𝑥𝑏𝑜𝑟𝑑𝑒𝑟_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖, 𝑘)

𝐴
∙

𝐶2

𝑅2(𝑖, 𝑘)
∙ cos(𝛼(𝑖, 𝑘)) 

Where 𝐴 and 𝐶 are calibration factors, 𝑅(𝑖, 𝑘) is the slant range distance and 𝛼(𝑖, 𝑘) is the local incidence angle 

for the pixel (𝑖, 𝑘). For Sentinel-1 data: 

𝜎0(𝑖, 𝑘) = 𝑥𝑏𝑜𝑟𝑑𝑒𝑟_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖, 𝑘) ∙ 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟(𝑖, 𝑘) 

The geometric terrain correction aligns pixels to geographic coordinates using a DEM, correcting distortions like 
foreshortening and shadowing [27]:  

𝜎0𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖, 𝑘) =
𝜎0𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑖,𝑘)

cos (𝛼(𝑖,𝑘))
 , 

Pre-processing ensures high-quality SAR data for applications such as land cover classification and environmental 

monitoring, using tools like the European Space Agency (ESA) Sentinel-1 Toolbox in SNAP. Further details are 

available in the SNAP Wiki [24]. 
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4.1 Application of the Despeckling Algorithm 

SAR images are inherently affected by speckle, a "noise-like" signal that arises from the coherent nature of 

electromagnetic scattering [28]. Although speckle contains some information about the illuminated surface, it 

degrades image quality and impairs the performance of scene analysis tasks, such as segmentation and 

classification, typically carried out by automated systems. To address this issue, a range of filtering techniques 

have been developed to reduce speckle significantly while preserving important scene features, including 

radiometric and textural information. 

Speckle is a multiplicative noise, meaning its intensity is proportional to the local grey level of the image. 

Therefore, speckle filtering is essential to suppress noise and enable better interpretation and analysis of 

backscatter data. However, it is crucial to recognize that speckle filtering can also unintentionally remove 

valuable information related to key land surface characteristics, such as soil moisture, biomass, and flood extent. 

Thus, the goal of an effective speckle filter is to minimize noise without sacrificing important image structures. 

There are several techniques for speckle removal, and each method involves a trade-off between noise 

suppression and preserving spatial resolution. One of the earliest and most widely used methods is the Lee filter 

[29], which was designed to reduce speckle while retaining essential features [30]. 

Another advanced technique is time-series-based processing, which leverages a sequence of SAR images 

captured over time. In recent years, multitemporal despeckling has emerged as a more effective approach, 

exploiting time-series data to address spatial denoising challenges while preserving spatial resolution. This 

method benefits from the increasing availability of SAR time-series, and it is commonly implemented in advanced 

processing pipelines, such as those available in Docker containers that support both the classical Lee filter and 

more sophisticated multitemporal filters. These multitemporal techniques are particularly useful in applications 

where spatial detail is critical and must be preserved while reducing noise over a series of observations. 

In summary, speckle removal is a critical step for improving SAR image interpretability, but it requires balancing 

noise suppression with the preservation of key scene features. The use of multitemporal methods represents a 

significant advancement, offering enhanced results compared to traditional single-image techniques. 

Lee speckle filtering 

4.1.1 Lee Speckle Filtering 

The Lee filter is an adaptive filtering technique specifically designed to reduce speckle noise in Synthetic Aperture 

Radar (SAR) images. It is the first model-based filter for this purpose, based on the Minimum Mean-Square Error 

(MMSE) algorithm. By transforming multiplicative speckle noise into additive noise, the Lee filter facilitates more 

effective analysis. Local statistics, such as mean and variance, are computed within a user-defined window to 

determine the new intensity value �̂�(𝑖, 𝑘) for each pixel (𝑖, 𝑘) is determined using: 

�̂�(𝑖, 𝑘) = 𝜇(𝑖, 𝑘) + 𝜔(𝑖, 𝑘) ∙ (𝑥(𝑖, 𝑘) − 𝜇(𝑖, 𝑘)) , 

Where 𝜇(𝑖, 𝑘) represent the local mean at pixel (𝑖, 𝑘), and 𝜔(𝑖, 𝑘) is the weighting factor given by: 

𝜔(𝑖, 𝑘) =
𝜎2(𝑖,𝑘)

𝜎2(𝑖,𝑘)+𝜂2
 , 

Here, 𝜎2(𝑖, 𝑘) is the local variance of the pixel (𝑖, 𝑘), and 𝜂2 is the noise variance, which is assumed constant 

across the image and nd is determined by the Equivalent Number of Looks (ENL): 

𝜂2  =
1

𝐸𝑁𝐿
 . 

ENL reflects the level of averaging applied to mitigate speckle noise and influences the filter's smoothing effects; 

a higher ENL results in more aggressive smoothing, while a lower ENL retains more detail but some speckle. Users 
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can experimentally adjust ENL to balance noise suppression with image detail preservation, making the Lee filter 

adaptable for various SAR image characteristics and applications.  

Recent research has highlighted the effectiveness of the Lee filter in enhancing SAR image quality by improving 

speckle suppression while maintaining spatial detail. Studies suggest that modifying the window size of the filter 

based on input image characteristics can significantly enhance speckle reduction. One study employed neural 

networks to predict optimal filtering parameters, leading to improved image quality and reduced speckle in 

Sentinel-1 SAR images [30]. 

Several investigations have explored combining the Lee filter with advanced techniques. For instance, integrating 

the Lee filter with non-linear diffusion and fusion-based thresholding methods has shown effective speckle 

suppression while preserving edge details, outperforming traditional filtering techniques on various metrics [31]. 

Another approach utilised discrete wavelet transforms alongside the Lee filter, achieving effective noise 

reduction while maintaining crucial image features, surpassing conventional methods [32]. 

Studies  [33] and [34] indicate that using a moving kernel size of 5x5 or 7x7 achieves an optimal balance between 

speckle suppression and the preservation of image details and textures. The Lee filter is recognised for its ability 

to maintain prominent edges, linear features, point targets, and texture information, achieved by minimising 

mean square error or using weighted least squares estimation techniques. 

4.1.2 Multi-Look Speckle Filtering 

Multi-look processing is a prevalent technique in Synthetic Aperture Radar (SAR) imaging, renowned for its 

effectiveness in enhancing image quality by reducing speckle noise, an inherent granular disturbance that 

complicates fine detail interpretation. This process involves averaging multiple independent views of the same 

scene, either in the range (horizontal) or azimuth (vertical) direction, or both, resulting in a smoother and more 

coherent image. However, this averaging leads to a trade-off: while the image becomes less grainy, its spatial 

resolution diminishes, causing fine details to be slightly blurred. This compromise is often acceptable, particularly 

for applications such as terrain mapping, object detection, and environmental monitoring, allowing for flexibility 

depending on the desired outcome of SAR image analysis. 

 
Figure 11. Principle of multi-look processing (a), acquiring a point on the ground from separated integration intervals 
(synthetic antennae) (b) and corresponding single-look images with range axis oriented along different squint angles (c). 

In SAR imaging, extended illumination occurs because of the low directivity of the radar antenna, causing specific 

ground points to be illuminated for durations significantly exceeding the integration time. As shown in Figure 

11(a) a ground point is illuminated as it moves through the antenna lobe, leading to the computation of multiple 

images for different integration intervals, illustrated in Figure 11(b). Due to different observation angles, the 

"range axis" of these single-look images does not align without proper geometric correction, especially when the 

platform's trajectory deviates from a straight line, necessitating an accurate geometrical model for alignment. 

Since each integration interval involves distinct observation angles, the "range axis" in these images, often 

 

(a) (b) (c) 
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referred to as "single-look images," does not align without appropriate geometric correction, as demonstrated 

in Figure 11(c). This mismatch is particularly pronounced when the platform's trajectory deviates from a straight 

line, necessitating a precise geometrical model for accurate alignment of single-look images. 

Multi-look processing effectively reduces speckle noise caused by diffuse reflections from rough surfaces. 

Speckle noise is independent across single-look images derived from non-overlapping integration intervals. By 

co-registering and averaging multiple single-look images within the same coordinate system, a smoother multi-

look image is created. Nevertheless, certain textures, particularly those with fractal-like surfaces, may retain their 

graininess despite the number of looks averaged, underscoring the importance of understanding the statistical 

characteristics of textures in the context of speckle reduction [35]. 

The multi-look intensity image 𝑥ML(𝑖, 𝑘) is obtained by averaging the intensities of the 𝐿 independent looks: 

𝑥ML(𝑖, 𝑘) =
1

𝐿
∑|𝑥𝑛(𝑖, 𝑘)|

2

𝐿

𝑛=1

 

Where 𝑥𝑛(𝑖, 𝑘) is the complex value of the 𝑛-th independent look, |𝑥𝑛(𝑖, 𝑘)|
2 represents the intensity (squared 

magnitude of the complex value), and 𝐿 is the total number of the independent looks. 

Speckle noise follows a multiplicative noise model. The variance of speckle noise in the multi-look image, σML
2 , is 

reduced compared to that of the single-look image, σSLC
2 , as quantified by: 

σML
2 =

σSLC
2

𝐿
 

As 𝐿 increases, speckle noise decreases, enhancing image quality but reducing spatial resolution. The relationship 

between the resolution of the multi-look image 𝑿ML and that of the single-look image 𝑿SLC is given by: 

𝑿ML = √𝐿 ∙ 𝑿SLC 

Thus, while increasing the number of looks results in a smoother image with reduced noise, it simultaneously 

reduces spatial resolution. In summary, multi-look processing creates an intensity image by averaging multiple 

independent looks, effectively mitigating speckle noise at the cost of spatial resolution. This technique is crucial 

in SAR image processing, enhancing clarity and interpretability while highlighting the trade-off between 

improved image quality and resolution, contingent on the number of looks employed. 

4.1.3 Multi-Temporal Speckle Filtering 

The multitemporal despeckling filter is a denoising approach that leverages a ratio-based framework for 

processing multitemporal SAR data, the RABASAR method, which stands for Ratio-Based Multi-temporal SAR 

Images Denoising. Instead of working directly on the noisy images, it computes a ratio image by dividing each 

noisy image by the temporal mean of the entire stack. This ratio image exhibits improved stationarity compared 

to individual noisy images, making it easier to reduce noise effectively.  

One of the key advantages of this method is that it better preserves thin structures that remain consistent across 

time, thanks to the multitemporal averaging. These stable features are maintained with greater accuracy, 

preventing them from being smoothed out during the denoising process [36]. 

Furthermore, because the ratio images have more uniform statistical properties, applying speckle-reduction 

techniques to these images yields better results than directly processing the original noisy images in the temporal 

stack. Another benefit is that the amount of data to be processed is reduced by creating a “super-image”, which 

sums up the essential information from the entire temporal stack. This allows the framework to more efficiently 

exploit the relevant content in the data, leading to both enhanced noise reduction and preservation of critical 
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image details across the stack. 

The process can be broken down into three key steps: 

1. Super-Image Calculation: The first step involves generating a "super-image," which is essentially the 

result of averaging a series of SAR images over time. This reduces speckle noise while maintaining the 

important spatial details of the image. The super-image can be spatially filtered to further suppress 

speckle noise. 

2. Ratio Image Creation: Once the super-image is calculated, the next step is forming the ratio between 

the noisy SAR image and the super-image. This ratio simplifies the noise structure, making it easier to 

denoise compared to directly denoising the original image. The ratio image primarily retains residual 

speckle, which is easier to address due to its stationarity. 

3. Reconstruction: After denoising the ratio image using conventional speckle reduction methods, the final 

denoised image is reconstructed by multiplying the denoised ratio image with the super-image. This 

method effectively suppresses speckle noise while preserving crucial geometrical and radiometric 

information. 

 

Figure 12. Overall process of the multitemporal despeckling method as applied to SAR time series. It visually summarizes 

the key steps, including the creation of a super-image from temporally averaged SAR data, the generation of ratio images, 

and the final denoising process. This method leverages both temporal and spatial information to effectively reduce speckle 

noise while preserving critical structural details across the time series. 

RABASAR outperforms many other techniques by preserving fine details, such as temporally stable thin 

structures, while achieving a good balance between noise suppression and detail preservation. It has been tested 

on simulated and real SAR data (e.g., Sentinel-1 and TerraSAR-X), showing improvements over other state-of-

the-art despeckling techniques, both visually and in metrics like PSNR (Peak Signal-to-Noise Ratio) and MSSIM 

(Mean Structural Similarity Index). The RABASAR framework makes the processing of SAR time series more 

efficient by focusing on reducing speckle in ratio images instead of the entire multi-temporal stack, and it can 

easily adapt to new data as they become available. 

According the sheme in Figure 12 and using its notation, The super-image �̂�𝑚(𝑖, 𝑘) is computed by averaging the 

SAR time series of spatially registered and radiometrically calibrated SAR images, reducing the speckle while 

preserving spatial resolution. If we have a series of 𝑇 SAR images denoted by 𝑣𝑡(𝑖, 𝑘) (where (𝑖, 𝑘) is the spatial 

location and 𝑡 is the time index), the super-image is defined as: 
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�̂�𝑚(𝑖, 𝑘) =
1

𝑇
∑𝑣𝑡(𝑖, 𝑘)

𝑇

𝑡=1

 

This corresponds to the temporal multi-looking, producing a reduced-speckle image known as the super-image. 

Next, the ratio image τ𝑡(𝑖, 𝑘) is calculated for each image 𝑣𝑡(𝑖, 𝑘) in the series by dividing the image by the super-

image �̂�𝑚(𝑖, 𝑘) at each spatial location 𝑠: 

τ𝑡(𝑖, 𝑘) =
𝑣𝑡(𝑖, 𝑘)

�̂�𝑚(𝑖, 𝑘)
 

This ratio image isolates the residual speckle noise between the image 𝑣𝑡(𝑖, 𝑘) and the super-image. The ratio 

image is easier to denoise as it tends toward pure speckle noise when the super-image closely approximates the 

true reflectivity. 

The ratio image is processed using a speckle-reduction algorithm. Since the ratio image follows specific statistical 

properties, often modeled by a gamma distribution, the denoising step is tailored to the statistics of the ratio 

image. For a gamma distribution, the likelihood of the speckle noise in the ratio image can be modeled as: 

𝑝(τ𝑡) ∼ Γ(𝑆, φ) 

where 𝑆 is the shape parameter and 𝜑 is the scale parameter. 

Once the ratio image 𝜏𝑡(𝑖, 𝑘) is denoised, the final denoised SAR image 𝑢𝑡(𝑖, 𝑘) is recovered by multiplying the 

denoised ratio image with the super-image: 

�̂�𝑡(𝑖, 𝑘) = �̂�𝑡(𝑖, 𝑘) ⋅ �̂�𝑚(𝑖, 𝑘) 

Here, �̂�𝑡(𝑖, 𝑘) is the denoised ratio image, and �̂�𝑡(𝑖, 𝑘) is the final denoised image at time 𝑡. 

This formulation ensures that both spatial and temporal information is efficiently used, while speckle noise is 

suppressed, and important image structures are preserved. 

5 Training dataset 

Due to the missing availability of training data during Phase 1, a lot of effort has been devoted to the preparation 

of photo-interpretation activity carried out to define the training sets. In order to generate a representative and 

informative training set, a stratified random sampling strategy was carried out to define to the prior probabilities 

of the land cover classes, computed according to the 2015 Copernicus Global Land Service Dynamic Land Cover 

map at 100 m resolution (CGLS-LC100). This first sampling was adopted to generate the photo-interpreted 

training points for the three static areas of Phase 1 for 2019 Africa Sahel, Amazonia and Siberia. These data 

collection of each area was performed by the EOS members UniGE, UniTN and UniPV, respectively. Then, this 

dataset served as the starting point for the definition of the photo interpreted datasets of all the historical 

HRLC30 products for 1990, 1995, 2000, 2005, 2010 and 2015. Using a backward approach starting from 2019, 

each training point in the dataset has been either confirmed or rejected in the preceding year. In Phase 2, a 

photo-interpretation activity will be carried out for the historical area for the 2024 HRLC30 production, and also 

in the extended Amazonia area for all HRLC30 years. For 2024, a similar approach to Phase 1 can be adopted 

except in the forward direction, i.e., either confirming or rejecting 2019 training points in 2024. The following 

subsections describe the training dataset definition adopted in Phase 1. 

5.1 Photo-interpreted training sets generation  

Operational land cover map production over large areas cannot rely on field campaigns because huge amounts 
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of costly data have to be collected, most importantly jeopardising the timeliness of the land cover map. In order 

to generate the training set used to perform the supervised classification of the considered study areas, a lot of 

effort has been devoted to photo-interpretation activities. Hence, even though existing thematic products 

represent a valid source of information, ground reference data are needed to model complex classes (e.g., 

aquatic vegetation types and seasonal shrubs) which require reliable samples that cannot be extracted from the 

outdated coarse thematic products. Although extremely complex and time consuming the reference data allows 

the production of high-quality training set which matches the definition of the legend and corresponds to the 

exact same time frame (see Figure 13 and Figure 14).  

To properly generate the training set, which is representative of the considered area, the team first estimated 

the prior probabilities of the classes by considering the information provided by the CGLS-LC100 map. Then, the 

samples to be labelled, were selected according to the stratified random sampling strategy. The label of each 

sample was defined by photointerpretation of both S-2 data and SPOT images in the RR areas. For areas where 

SPOT images were not available, we exploited the public very high-resolution (VHR) Google and ESRI images (i.e., 

50 cm). The labels of the first level of hierarchy are assigned according to the rules presented in Figure 15. In 

particular, the data were pixel-wise labelled, thus we avoided the strong positive correlation between samples 

units, which is the case for polygon-wise labelling. 

 

 
Figure 13. Training Set Production conducted via photointerpretation. 

 
Figure 14. Example of number of tiles to be covered by photointerpretation in Amazonia during Phase 1. In Phase 2, the 

photointerpretation is being spatially extended according to the Amazonia area extension and updated for 2024. 
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Although the photointerpretation represents a valid solution for generating the training set, the legend scheme 

reported in Figure 15 presents some discrepancy with a set of classes which can be discriminated by the 

considered remote sensing data. For example, it is difficult to separate shrubs and tree cover by height using HR 

optical imagery only. Additionally, differently from the medium resolution no mixed classes are present in the 

legend (e.g., Mosaic herbaceous cover (>50%) / and shrub (<50%)). Although we are working at 10 m spatial 

resolution, the detection of shrubs in the Sentinel 2 images is challenging (see Figure 16). The identification of 

deciduous and evergreen shrubland is even more challenging. 

 

 
Figure 15. The classification scheme of the training-set production. 

 
 

 

  
Figure 16. Differently from the medium resolution no mixed classes are present in the legend (e.g., Mosaic herbaceous 

cover (>50%) / and shrub (<50%). Although we are working at 10 m spatial resolution, the detection of shrubs in the 

Sentinel 2 images is challenging. The identification of deciduous and evergreen shrubland is even more challenging. 

 
In the case of the historical training set photo-interpretation activity, and at the same time changing the 

resolution of the available images from 10 to 30 meters, the team has identified following challenges: 

• less HR images are available; 

• L-7 images are corrupted; 
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• spatial resolution of 30m hampers extraction of training points as the spectral information is often 

mixed. Moreover, the NDVI and NDWI trends (crucial to differentiate some very similar classes e.g. 

grassland vs cropland) are unclear and difficult to interpret. 

Considering all the above-mentioned points, the team has decided to update the training set extracted in 2019. 

This means to confirm the label assigned to a sample in 2019 or otherwise to eliminate the sample from the 

training set. Thus, the training set produced for the years 1990-2015 have smaller number of samples compared 

to the one used to classify the static map. Figure 17 shows a qualitative example of the data used to perform the 

photointerpretation for 2005 in Africa. 

 
Figure 17. Many difficulties going back in the past for the photo-interpretation process: (i) less images are available; (ii) 

Landsat 7 Corrupted; (iii) NDVI and NDWI trend not clear; (iv) the spatial resolution of 30m. 

5.2 Final static training sets generation 

While complex classes require reliable samples that cannot be extracted from the outdated coarse thematic 

products, existing thematic products represent a valid source of information for the other classes, allowing to 

significantly expand the training set and properly represent the whole areas to map. For this reason, only for the 

static map production for 2019, we integrated the training sets delivered through photointerpretation with 

samples extracted from the agreement of land cover products available. Oversampling of the complex classes 

was performed to keep the training set prior distribution of the land-cover classes constant. Moreover, the 

increased amount of training labels unlocked the possibility of exploiting the specific properties of the local land 

cover. This can be done by considering the terrestrial ecoregions [37], which are areas of water or land that 

contain characteristic assemblages of natural communities and species. By training a classifier for each ecoregion, 

we can exploit the fact that inside an ecoregion the probability of encountering different vegetation species 

(which may be mapped in the same class) and communities remains relatively constant. This feature is important 

in land-cover mapping with remote sensing images, as it allows to mitigate the intra-class variance, a well-known 

issue in remote sensing. 
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Figure 18. Amazon static: (a) photo-interpreted training set, (b) final training sets divided by ecoregions. 

Therefore, we combined the photo-interpreted training sets with samples extracted from the agreement of land 

cover products available in MOLCA [38], and then divided each area in smaller areas defined by considering the 

ecoregions. This was done at tile level and by aggregating ecoregions to avoid excessive fragmentation of training 

set. Figure 18 shows as an example the photo-interpreted training set and the final training set of Amazonia static 

area, respectively. Figure 19 shows the final division into ecoregions of the three mapped areas in Phase 1. Note 

that the ecoregion training sets are slightly larger and overlapping with each other to guarantee consistent 

predictions of the land cover on the ecoregion borders. 

 
Figure 19. Final division into ecoregion for the three mapped areas. 

For the historical training datasets, only confirmed photo-interpreted training points from 2019 were used to 

train the classifiers. For this reason, it was not possible to consider an ecoregion-based subdivision as performed 

for the static map. However, in Phase 2, ecoregions will be taken into consideration also for the historical 

production 1990-2024 in the extended Amazonia area. Given the larger extent of the historical production of 

Phase 2 in Amazonia, an ecoregion-based approach becomes necessary in order to adapt the model to the local 

characteristics of the territory.  
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Figure 20. Terrestrial ecoregions in the south America continent. The colour represents the different ecoregion aggregation 

considered during Phase 1 without the MGRS S-2 tile based coarsening. The colour yellow highlights new ecoregions in the 

extended area (note that the exact borders are still to be defined, see PSD [AD2]), whose aggregation into larger ecoregions 

will be finalized once the final borders of the extended area are defined. 

To this end, we are considering adopting a less coarse division of the area based on the ecoregions, which will 

still be aggregated to avoid excessive fragmentation. Figure 20 shows the ecoregions of the extended Amazonia 

area (note that the exact borders are still to be defined, see PSD [AD2]), where the yellow areas refers to new 

ecoregions that are going to be added and aggregated in Phase 2. The other coloured ecoregions show instead 

the aggregation of ecoregions that has been performed in Phase 1 within the static area. 

5.3 Training Set Generation for DL algorithms applied to SAR LC classification 

The Map of Land Cover Agreement (MOLCA) was used to create the training set for the SAR DL architecture in 
the three static areas identified in Phase 1 of the Climate Change Initiative Extension (CCI+) project: Amazonia, 
Africa, and Siberia. MOLCA was generated by integrating existing global High Resolution Land Cover (HRLC) maps, 
retaining only those areas where all datasets concur on the same land cover class while discarding areas of 
disagreement. These disputed pixels are marked as "no data" and set to zero in the map to prevent the model 
from learning erroneous relationships associated with the "no data" class, which would be both useless and 
misleading. 

Table 6. The MOLCA classification legend that aligns with many existing high-resolution land cover datasets. It consists of 
nine distinct land cover classes, which help in the categorization and analysis of land use in the regions covered, including 
the Amazon, Africa, and Siberia. 
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The MOLCA images are structured according to the S-2 L1C product tiling grid and distributed in GeoTIFF format, 
encompassing approximately 117 billion pixels at a resolution of 10 meters. This dataset was produced as part 
of the CCI+ Phase 1 project. 
 
The land cover classes represented in MOLCA are detailed in Table 6, covering the period from 2016 to 2020. The 
accuracy estimate for MOLCA indicates an overall accuracy (OA) of 96% [38]. 

 
Figure 21. The seasonal distribution of Sentinel-1 acquisitions for 2021 corresponding to the selected Sentinel-2 tiles in the 
Amazon region is illustrated for each season: (a) winter, (b) spring, (c) summer, and (d) autumn. This distribution highlights 
the varying availability of SAR data across different times of the year, which is crucial for accurate land cover classification 
and analysis. 

 
Figure 22. The seasonal distribution of Sentinel-1 acquisitions for 2021 corresponding to the selected Sentinel-2 tiles in the 
Africa region is illustrated for each season: (a) winter, (b) spring, (c) summer, and (d) autumn. This distribution highlights 
the varying availability of SAR data across different times of the year, which is crucial for accurate land cover classification 
and analysis. 

 
Figure 23. The seasonal distribution of Sentinel-1 acquisitions for 2021 corresponding to the selected Sentinel-2 tiles in the 
Siberia region is illustrated for each season: (a) winter, (b) spring, (c) summer, and (d) autumn. This distribution highlights 
the varying availability of SAR data across different times of the year, which is crucial for accurate land cover classification 
and analysis. 

To ensure a significant training dataset, the test areas were randomly and uniformly sampled according to the 
Sentinel-2 tiling scheme, with the spatial coverage displayed in Figure 21, Figure 22, and Figure 23 for Amazonia, 
Africa, and Siberia, respectively. Each tile, measuring 10980 × 10980 pixels in the UTM coordinate reference 
system, was subdivided into smaller areas of 549 × 549 pixels, representing 1/20th of the tile's linear dimensions. 
The most significant patches, defined as those containing the largest number of land cover classes, were selected 
through visual inspection for each tile and region. This ensured a balanced representation of the land cover 
classes present in the scenes. Special attention was given to including samples from classes that appear in only 



 

Ref D2.2 - ATBD 

 
Issue Date Page 

1.1 16/12/2024 33 

 
a few patches, such as lichens, mosses, and permanent ice in the selected Siberian region. 

Once the most representative patches were identified, the corresponding Sentinel-1 features were computed 
following the methodology outlined in the previous section. The seasonal spatial distributions concerning the 
availability of 2021 Sentinel-1 acquisitions are illustrated in Figure 21, Figure 22, and Figure 23 for Amazonia, 
Africa, and Siberia, respectively. The colour map used in the graphs indicates varying acquisition scenarios, 
ranging from 5-10 images (red) to more than 50 acquisitions (dark green). Despite the presence of red tiles in 
each season, the number of acquisitions is sufficient to carry out spatio-temporal feature extraction [39]. 

The final training sets comprise 86 MOLCA patches for Amazonia, 103 MOLCA patches for Africa and 64 MOLCA 
patches for Siberia. 

6 Multi-sensor geolocation 

In the CCI+ HRLC pipeline, the multi-sensor geolocation is applied to the outputs from the optical and SAR pre-
processing chains to align the data from both chains spatially. During the Phase 1, the effectiveness of this 
processor was confirmed by its extensive validation (not only in this multi-sensor optical-SAR application but also 
in its use within the SAR pre-processing chain). For this reason, no modification is planned in Phase 2 for the 
multi-sensor geolocation module, which is confirmed in its formulation developed in Phase 1. Accordingly, the 
detail of the corresponding algorithms (information-theoretic area-based registration, direct maximization 
method, tiling-based processing) can be found in the latest version of the ATBD of Phase 1 [AD4]. 

7 Optical data classification 

For the classification step in the optical processing chain, the main challenges in Phase 1 were defined by i) the 
scarcity of available photo-interpreted data able to properly characterize the large areas that need to be mapped, 
ii) the considered input features, and iii) the optimization and efficiency of the considered classification 
algorithm. Therefore, Phase 2 is focusing on the improvement of the overall classification pipeline. In the 
following, the optical classification pipeline is described in detail, with the addition of the information related to 
the ongoing Phase 2 activities. 

 
Figure 24. Optical data processing chain for the prototype production of both the static and the historical HRLC maps 

obtained by classifying the time series of HR optical data. 

Figure 24 depicts the optical data processing chain for the production of both the static and the historical HRLC 
maps obtained by classifying the time series of S-2 and Landsat data. The images are first pre-processed in order 
to generate the optical composites. Then, the composites are combined with ancillary data (i.e., SRTM DEM) to 
extract the final features used by the classifiers. The classifiers are first trained using the available training points 
and then used to generate the pixel-wise class-posterior probabilities adopted by the decision fusion processing 
chain to generate the final LC products.  

7.1 Feature extraction 
The feature extraction step aims at generating a set of representative attributes for the given pixel to maximise 
the ability of the classifier in detecting the correct land cover. In Phase 1, the features used as input to the 
classifier were the spectral bands of the time series of optical composites combined with the altitude of the pixel 
as given by the SRTM DEM and the textural features of the first composite. While temporal and spectral features 
are good in representing the seasonality of the classes, the aim of the textural and altitude features extraction is 
to provide to the classifier information about spatial context of the samples which can provide better land cover 
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discrimination. Texture allows the accurate characterization of the contextual information of a pixel in the image. 
In the literature, it can be found that the use of textural information can significantly improve the classification 
results. Hence, such features can be more distinctive than spectral features for some land cover classes. Instead 
of considering complex spatial features, such as shape and size, which required the unsupervised segmentation 
of the image, in Phase 1 we considered other textural feature extractors. First, the Gray-Level Co-Occurrence 
Matrix (GLCM) is computed. Then the GLCM is used to extract the following statistical measures, used as features: 

• Dissimilarity; 

• Correlation; 

• Contrast; 

• Homogeneity; 

• Energy; 

• Angular Second Moment (ASM). 
However, during Phase 1, GLCM-based textural features have shown to be computationally demanding to 
generate. Therefore, we are investigating alternative strategies, such as precomputed convolutional filters or the 
adoption of deep learning algorithms able to inherently extract spatial features, e.g., Convolutional Neural 
Networks (CNNs). Textures are not the only features being improved in Phase 2. Focus will also be given to the 
extraction of better spectral and topographical features. The former relies on the use of NDIs, which can be 
defined by using two spectral bands 𝑏1, 𝑏2 of the optical composites 𝐗𝐶𝑜𝑚  as follows: 

𝐍𝐃𝐈𝐶𝑜𝑚(𝑏1, 𝑏2) =
𝐗𝐶𝑜𝑚(𝑏1) − 𝐗

𝐶𝑜𝑚(𝑏2)

𝐗𝐶𝑜𝑚(𝑏1) + 𝐗
𝐶𝑜𝑚(𝑏2)

∈ [−1,+1]. 

The latter relies on specific topographic information that can be extracted from a DEM, i.e., slope and aspect, 
which can be defined starting from common edge detector filters applied to the DEM.  

7.2 Classification 
Once features are extracted and the training datasets defined, for each training set a supervised classification 
model is trained. Then, each model is used to generate the class-posterior probabilities of the corresponding 
area (or ecoregion) and year. Given a feature vector 𝒙 for a given pixel, the objective is to train a classifier that 
predicts the class posterior probabilities 𝑃(ℓ|𝒙) for each land cover ℓ = 1,… , 𝒞, where 𝒞 is the number of land 

covers and ∑ 𝑃(ℓ|𝒙)𝒞
ℓ=1 = 1. Ideally, 𝑃(ℓ|𝒙) represents the probability of land cover ℓ given observed featured 

vector 𝒙. Many statistical-based machine learning methods rely on the approximation of 𝑃(ℓ|𝒙). The most 
common approach to achieve this is to train the model by minimizing the cross-entropy loss on the training set. 
Let 𝒟 = {(𝒙𝑖 , ℓ𝑖)|𝑖 = 1,… , 𝑁} be a training set where for each sample 𝑖 we observe a feature vector 𝒙𝑖  and a 

land cover label ℓ𝑖. Then, let 𝑃(ℓ̂|𝒙; 𝝑) be the predicted optical class-posterior probabilities from a model 

parametrized by 𝝑. The model can be trained by minimizing the empirical risk ℛ𝒟(𝝑)  over the training set 𝒟 
with the cross-entropy loss, where the empirical risk is defined as follows: 

ℛ𝒟(𝝑) = −∑log𝑃(ℓ̂𝑖|𝒙𝑖; 𝝑)

𝑁

𝑖=1

. 

In the case the chosen classification strategy does not rely on the approximation of 𝑃(ℓ|𝒙), the class-posterior 
probabilities can still be estimated by means of probability calibration strategies, e.g., Platt scaling or Isotonic 
Regression. They train a logistic regression model and a non-parametric regression model on top of the decision 

function scores of the base model to predict 𝑃(ℓ̂|𝒙), respectively. 

During Phase 1, the final choice resulted from the algorithm selection phase was the use of Support Vector 
Machines (SVMs), which do not estimate the class-posterior probabilities directly, later estimated using an 
Isotonic Regression model. SVMs have shown to be the optimal candidate for the optical classification given data 
and compute constraints, related to the use of GPUs, limiting the possibility of working with deep learning (DL) 
strategies. However, GPU availability is now increasing. Thus, in Phase 2, the classification strategy to adopt in 
the optical processing chain is being re-evaluated. Several deep learning approaches are being considered in our 
analysis. Focus will be given to strategies for properly handling intra-annual TS of composites [40], but also to 
multi-year classification for temporally consistent classifications [41], [42]. The considered models will be 
compared both in terms of performance and inference time. Indeed, focus will be given to the optimization and 
efficiency of the model inference step, to allow faster generation of optical land cover maps. The following 
subsections will provide details on the considered methods as well as on the currently adopted SVM classifier. 

7.2.1 Deep Learning Approaches 

In Phase 2, the main deep learning methods being studied are multitemporal architecture able to model the 
temporal aspects of the SITS observations. Among them, we identified the following architectures [40]. 

• Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) cell architecture [43]. This 
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network encodes a SITS to increasingly higher-level 𝑑-dimensional representations through many 
cascaded bidirectional LSTM layers. Each LSTM layer processes the TS processed by the previous one, 
using gates (input, forget, and output gates) to control the flow of information. This allows the network 
to retain important temporal features and discard irrelevant ones, which is crucial for capturing seasonal 
or periodic changes in land cover. 

• Encoder part of a Transformer [44]. The Encoder leverages self-attention mechanisms to capture both 
temporal dependencies and global context more efficiently compared to traditional RNNs like LSTMs. 
Transformer models, originally designed for natural language processing tasks, have shown exceptional 
performance in sequential data modelling, and they have been adapted to handle time series data, 
including satellite imagery. The key component is the Self-Attention mechanism, which allows the model 
to focus on different parts of the SITS when learning representations for each composite. Instead of 
processing data sequentially, the self-attention mechanism computes the relationships between all the 
time steps in the series simultaneously, making it more efficient in capturing long-term dependencies 
and global patterns than traditional RNNs. 

• Temporal CNNs (TempCNN) [45]. TempCNN is a lightweight architecture composed of sequential 1D 
convolutional layers followed by ReLU activation functions and Dropout layers. The 1D convolutions are 
applied pixel-wise along the temporal dimension, which allows the model to learn temporal patterns 
specific to each land cover. 

• DUal view Point deep Learning architecture for time series classificatiOn (DuPLO) [46]. DuPLO is a 
complex DL model designed for crop type classification from sequences of small satellite images of five-
by-five pixels. It consists of two streams. A three-layer CNN stream uses 2D convolutions to aggregate 
spatial features independently of time. The second stream implements a 2DCNN encoder and 
monodirectional RNN layer implemented by a Gated Recurrent Unit (GRU) for temporal characteristics. 

Among these, only DuPLO is originally designed to manage both spatial and temporal information. As anticipated 
in Section 7.1, we are considering alternatives to GLCM features. With DuPLO, it is possible to learn convolutional 
filters able to extract this type of information. In order to not exclude any of the other approaches, we are also 
investigating the use of few convolutional layers as first layers of the other considered architectures, thus 
effectively making all of them able to exploit both spatial and temporal characteristics of the SITS. The best 
candidate architectures will be selected based on internal benchmarking on some selected S-2 MGRS tiles in the 
different areas. Additional details will be provided in the context of the deliverable D2.1 Product Validation and 
Algorithm Selection Report. 

7.2.2 Weakly Supervised Learning 

Given the complexity of the considered classification problem, the training of the classifiers can be performed in 
a completely supervised, a partially supervised (or semi-supervised) and an unsupervised framework. In Phase 2 
of the project, Weakly Supervised Learning (WSL) [47] is being considered. WSL stands in between complete 
supervision and partial supervision and is based on the use of unreliable sources of training labels. In the context 
of the project, WSL can be used to leverage obsolete maps as an additional source of labels [48], [49], [50]. In 
Phase 1, the training set was augmented using part of the maps intercomparison activities (i.e., MOLCA), which 
provided weak training labels where the available land cover maps agreed. While this was shown to be helpful, 
there is still room for improvement. Indeed, la els produced in this way tend to  e  iased towards “easy” 
samples, thus providing little help in points where existing maps disagree. Instead, WSL provides a framework 
where all the available labels (not only the maps agreement) can be exploited, and the uncertainty of the label 
can be considered during training to guide its effect on the learning process. In the framework of Phase 2, this 
allows to use a much larger pool of reference (weak) labels for training our classification models. Therefore, 
available land-cover products can be used not only for the production of the static HRLC10 maps, but also for the 
historical HRLC30 maps, providing two major benefits: 

1. Ecoregions can effectively be used for training also the historical models; 
2. DL solution, known for being data-hungry, can be used for both HRLC10 and HRLC30. 

Let �̃� = {(𝒙𝑖 , ℓ̃𝑖)|𝑖 = 1,… ,𝑁} be a dataset containing N instances labelled by an inaccurate source, where ℓ̃𝑖  is 

the weak label. Let ℓ𝑖  be the true label of the 𝑖‑th instance. We can assume that the dataset is sampled i.i.d. from 
the following joint distribution: 

𝑝(𝒙, ℓ̃) = ∑𝑃(ℓ̃|ℓ, 𝒙)𝑃(ℓ|𝒙)𝑝(𝒙)

ℓ

, 

where 𝑃(ℓ|𝒙) is the true class-posterior distribution and 𝑃(ℓ̃|ℓ, 𝒙) represents the noise process that makes the 

given labels inaccurate. WSL aims at training a model to be able to predict 𝑃(ℓ|𝒙) despite being trained on �̃�. To 
achieve these, several strategies can be adopted: 

• Noise-model-free approaches: these approaches do not make any assumptions on the process 
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𝑃(ℓ̃|ℓ, 𝒙). They usually are approaches that either exploit alternative robust loss functions to the 

common cross entropy, aiming for robustness and overfitting reduction, or use the classification 
confidence feedback from the model to try sifting out wrong annotations during training [51]. 

• Noise-model-based approaches: these approaches tend to be more successful if they make the correct 

assumptions or provide the correct prior information regarding the process 𝑃(ℓ̃|ℓ, 𝒙). Such approaches 

explicitly consider the noise process and exploit training strategies that avoid using the weak labels ℓ̃ 
directly. In this category we find class-dependent label-noise-based approaches, which exploit the 

confusion matrix of the sources to model the label noise in the labels (i.e., they assume 𝑃(ℓ̃|ℓ, 𝒙) ∼

𝑃(ℓ̃|ℓ)) [49], or approaches that model different aspects characteristics of the weak labels, such as 

semantic differences or pixel resolution differences [52]. 
Ongoing activities are focused on the development and comparison of deep learning classifiers trained with 
multisource weak labelled data as alternative to the well-established SVM classifiers, used in Phase 1. The 
detailed analysis on the model selection process will be thoroughly described in the context of deliverable D2.1 
Product Validation and Algorithm Selection Report.  

7.2.3 Support Vector Machines 

As a classifier, the Support Vector Machine (SVM) is one of the most effective methods in pattern and texture 
classification to the land cover mapping [53]. Its fundamental idea is that the feature of input space is mapped 
into a high-dimensional feature space through nonlinear transformation. The nonlinear transformation is 
implemented by defining proper kernel function. SVM has two important features. Firstly, the upper bound on 
the generalization error does not depend on the dimension of the space. Secondly, the error bound is minimized 
by maximizing the margin, that is, the minimal distance between the hyperplane and the closest data points [54], 
[55]. SVMs are particularly appealing in remote sensing field due to their ability to successfully handle small 
training datasets, often producing higher classification accuracy than traditional methods, as well as to be the 
best algorithm when classes are separable [55]. In contrast, for larger dataset, it requires a large amount of time 
to process.  
SVM implements a classification strategy that exploits a margin- ased “geometrical” criterion rather than a 
purely “statistical” criterion. In other words, SVM does not require an estimation of the statistical distri utions 
of classes to carry out the classification task. Instead, the classification model exploits the concept of margin 
maximization. The main properties that make SVM particularly attractive in the considered application are the 
following: 

• their intrinsic effectiveness with respect to traditional classifiers thanks to the structural risk 
minimization principle, which results in high classification accuracies and very good generalization 
capabilities; 

• the possibility to exploit the kernel trick to solve non-linear separable classification problems by 
projecting the data into a high dimensional feature space and separating the data with a simple linear 
function; 

• the convexity of the objective function used in the learning of the classifier, which results in the 
possibility to solve the learning process according to linearly constrained quadratic programming (QP) 
characterized from a unique solution (i.e., the system cannot fall into sub-optimal solutions associated 
with local minima); 

• the possibility of representing the convex optimization problem in a dual formulation, where only non-
zero Lagrange multipliers are necessary for defining the separation hyperplane (which is a very 
important advantage in the case of large datasets). This is related to property of sparseness of the 
solution. 

Using the same notation as above, let us assume that a training set is given by 𝒟 = {(𝒙𝑖 , ℓ𝑖)|𝑖 = 1,… , 𝑁}. In their 
basic form, SVMs perform binary classification, and ensembles of SVMs are used to perform multi-class 
classification. Therefore, for the sake of simplicity, let’s consider the scenario where there are 𝒞 = 2 land covers, 

and ℓ𝑖 ∈ {+1,−1} is the binary label of the sample 𝒙𝑖 ∈ ℝ
𝑑. The goal of the binary SVM is to divide the d-

dimensional feature space in two subspaces, one for each class, through a separating hyperplane ℋ: 〈𝝑, 𝒙〉 +
𝑏 = 0, where 〈𝒂, 𝒃〉 is the inner product between vectors 𝒂 and 𝒃. The final decision rule used to find the 
membership of a test sample is based on the sign of the discrimination function 𝑓(𝒙) = 〈𝝑, 𝒙〉 + 𝑏 associated to 
the hyperplane. Therefore, a generic sample 𝒙 will be labelled according to the following rule: ℓ = sign 𝑓(𝒙). 
The training of an SVM consists in finding the position of the hyperplane ℋ, estimating the values of the 
parameter vector 𝝑 and the scalar 𝑏, according to the solution of an optimization problem. From a geometrical 
point of view, 𝝑 is a vector perpendicular to the hyperplane ℋ and thus defines its orientation. The distance of 
the ℋ to the origin is 𝑏/ ‖𝝑‖, while the distance of a sample 𝒙 to the hyperplane is 𝑓(𝒙)/ ‖𝝑‖. Let us define the 
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functional margin 𝐹 = min

𝑖=1,…,𝑁
ℓ𝑖𝑓(𝒙𝑖), and the geometric margin 𝐺 = 𝐹/ ‖𝝑‖. The geometric margin represents 

the minimum Euclidean distance between the available training samples and the hyperplane. 
In the case of a linearly separable problems, the learning of an SVM can be performed with the maximal margin 
algorithm, which consists in finding the hyperplane ℋ that maximizes the geometric margin 𝐺. However, the 
maximum margin-training algorithm cannot be used in case the available training samples are not linearly 
separable because of noisy samples and outliers. In these cases, the soft margin algorithm is used in order to 
handle nonlinear separable data. This is done by defining the so-called slack variables 𝜉𝑖  as follows: 

𝜉𝑖 = max [0,1 − ℓ𝑖(〈𝝑, 𝒙𝑖〉 + 𝑏)] 
Slack variables allow one to control the penalty associated with misclassified samples. In this way the learning 
algorithm is robust to both noise and outliers present in the training set, thus resulting in high generalization 
capability. The optimization problem can be formulated as follows: 

{
min
𝒘,𝑏

{
1

2
‖𝝑‖2 + 𝐶∑ 𝜉𝑖

𝑁

𝑖=1

}

ℓ𝑖(〈𝝑, 𝒙𝑖〉 + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0,∀𝑖 = 1,… ,𝑁

 

where  𝐶 ≥ 0 is the regularization parameter that allows one to control the penalty associated to errors (if 𝐶 →
+∞, we come back to the maximal margin algorithm), and thus to control the trade-off between the number of 
allowed mislabelled training samples and the width of the margin. If the value of 𝐶 is too small, many errors are 
permitted and the resulting discriminant function will poorly fit with the data; on the opposite, if 𝐶 is too large, 
the classifier may overfit the data instances, thus resulting in low generalization ability. A precise definition of 
the value of the 𝐶 parameter is crucial for the accuracy that can be obtained in the classification step and should 
be derived through an accurate model selection phase. Similarly to the case of the maximal margin algorithm, 
the optimization problem can be rewritten in an equivalent dual form: 

{
 
 

 
 
max
𝜶
{∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑ℓ𝑖ℓ𝑗𝛼𝑖𝛼𝑗〈𝒙𝑖 , 𝒙𝑗〉

𝑁

𝑗=1

𝑁

𝑖=1

}

∑ℓ𝑖𝛼𝑖

𝑁

𝑖=1

= 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 1 ≤ 𝑖 ≤ 𝑁

 

Because of the constraint introduced by the multipliers {𝛼𝑖}𝑖=1
𝑁  that for the soft margin algorithm are bounded 

by the parameter 𝐶, the problem is also known as box constrained problem. The Karush–Kuhn–Tucker (KKT) 
complementarity conditions provide useful information about the structure of the solution. They state that the 
optimal solution should satisfy: 

{
𝛼𝑖 [ℓ𝑖(〈𝝑, 𝒙𝑖〉 + 𝑏) − 1 + 𝜉𝑖] = 0, 𝑖 = 1,… , 𝑁

𝜉𝑖(𝛼𝑖 −𝐶) = 0, 𝑖 = 1,… ,𝑁
 

Varying the values of the multipliers {𝛼𝑖}𝑖=1
𝑁  three cases can be distinguished: 

{

𝛼𝑖 = 0 ⇒ ℓ𝑖𝑓(𝒙𝑖) > 1

0 < 𝛼𝑖 < 𝐶 ⇒ ℓ𝑖𝑓(𝒙𝑖) = 1

𝛼𝑖 = 𝐶 ⇒ ℓ𝑖𝑓(𝒙𝑖) < 1

 

The support vectors with multiplier 𝛼𝑖 = 𝐶 are called bound support vectors (BSV) and are associated to slack 

variables 𝜉𝑖 ≥ 0; the ones with 0 < 𝛼𝑖 < 𝐶 are called non-bound support vectors (NBSV) and lie on the margin 

hyperplane ℋ1 or ℋ2 (ℓ𝑖𝑓(𝒙𝑖) = 1). 
 

 
Figure 25: Qualitative example of a separating hyperplane in the case of a non-linear separable classification problem. 
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An important improvement to the above-described methods consists in considering nonlinear discriminant 
functions for separating the two information classes. This can be obtained by transforming the input data into a 

high dimension (Hilbert) feature space 𝚽(𝒙) ∈ ℝ𝑑
′
 (𝑑′ > 𝑑), where the transformed samples can be better 

separated by a hyperplane (Figure 26). The main problem is to explicitly choose and calculate the function  

𝚽(𝒙) ∈ ℝ𝑑
′
 for each training sample. Given that the input points in dual formulation appear in the form of inner 

products, we can do this mapping in an implicit way by exploiting the so-called kernel trick. Kernel methods 
provide an elegant and effective way of dealing with this problem by replacing the inner product in the input 
space with a kernel function such that: 

𝒦(𝒙𝑖 , 𝒙𝑗) = 〈𝚽(𝒙𝑖),𝚽(𝒙𝑗)〉, 𝑖, 𝑗 ∈ {1, … , 𝑁}, 

implicitly calculating the inner product in the transformed space. The soft margin algorithm for nonlinear 
function can be represented by the following optimization problem: 

{
 
 

 
 
max
𝜶
{∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑ℓ𝑖ℓ𝑗𝛼𝑖𝛼𝑗𝒦(𝒙𝑖 , 𝒙𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

}

∑ℓ𝑖𝛼𝑖

𝑁

𝑖=1

= 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 1 ≤ 𝑖 ≤ 𝑁

, 

and the discrimination function becomes: 

𝑓(𝒙) =∑ℓ𝑖𝛼𝑖
∗ 𝒦(𝒙𝑖 , 𝒙) + 𝑏

𝑁

𝑖=1

, 

where only support vectors (i.e., {𝒙𝑖|𝛼𝑖
∗ ≠ 0, 𝑖 = 1,… , 𝑁}) contribute to (and therefore are used for) the 

decision. The condition for a function to  e a valid kernel is given  y the Mercer’s theorem. The most widely used 
non-linear kernel functions are the following:  
 

• Homogeneous polynomial function: 𝒦(𝒙𝑖 , 𝒙𝑗) = 〈𝒙𝑖 , 𝒙𝑗〉
𝑝, 𝑝 ∈ ℤ;  

• Inhomogeneous polynomial function: 𝒦(𝒙𝑖 , 𝒙𝑗) = (𝑐 + 〈𝒙𝑖 , 𝒙𝑗〉)
𝑝
, 𝑝 ∈ ℤ, 𝑐 > 0;  

• Gaussian function (a.k.a. Radial Basis Function (RBF)): 𝒦(𝒙𝑖 , 𝒙𝑗) = 𝑒
‖𝒙𝑖−𝒙𝑗‖

2

2𝜎2 , 𝜎 ∈ ℝ+. 

 

 

Figure 26: Transformation of the input samples by means of a kernel function into a high dimension feature 
space: a) Input feature space; b) kernel induced high dimensional feature space. 

From an operational perspective, a possible implementation would use the RBF kernel since linear and 

polynomial kernels are less time consuming but provide in general less accuracy. The Sigma 𝜎 parameter is a 

positive parameter whose behaviour regulates the fitting property: if its value increases the model gets overfits, 

while decreasing the model underfits. In our implementation, the default value for gamma is initially set equals 

to 1 over the number of features [56], optimal choice is made in proper training stage, where the meta 

parameters 𝜎 and 𝐶 are tuned by considering the model performance during k-fold cross validation on the 

training set. Since the problem is multi-class classification problem with 𝒞 land cover classes, 𝒞 binary SVMs are 

trained to discriminate each land cover from the others, resulting in in 𝒞 discrimination functions 𝑓ℓ(𝒙) with ℓ =



 

Ref D2.2 - ATBD 

 
Issue Date Page 

1.1 16/12/2024 39 

 
1,… , 𝒞. However, 𝑓ℓ(𝒙) do not provide class-posterior probabilities. To solve this problem, Isotonic Regression 

is used to estimate them. It fits a left-out subset of the training set with a non-parametric isotonic regressor, 

which outputs a stepwise non-decreasing function that approximates the posterior probability of each land cover 

independently, and then normalizes them to make them sum to 1. 

8 SAR Data Classification 

To perform land cover classification using SAR datasets, based on the classes defined in Table 1, feature 

extraction will utilize the polarimetric properties of the data [57], [58]. The classification process aims to enhance 

the ability of the classifier to identify and distinguish various environmental textures and morphological features, 

such as urban areas, agricultural fields, forests, and other land cover types. This will be achieved by leveraging 

the amplitude of different polarization channels (e.g., HH, HV, VH, VV) and/or their combinations. Even when the 

SAR data used in the project (Sentinel-1, ERS and ENVISAT) are not fully polarimetric, valuable information can 

still be obtained from the available polarization intensities. This can be done by analyzing individual channels 

(e.g., selecting a specific polarization like HV or VV) or through combined metrics, such as calculating the mean, 

ratio, or other derived features from multiple channels. These combinations help capture essential polarimetric 

information, allowing the distinction between different scattering mechanisms, such as specular (mirror-like) 

scattering and diffuse (random) scattering. This is crucial for accurately characterizing different land cover types 

and improving the overall classification accuracy. 

The following section outlines the SAR features that will serve as inputs to the deep learning (DL) network. It is 

important to note that these features are consistent with those used in Phase 1, ensuring continuity in the 

classification approach. These features have been carefully selected based on their effectiveness in capturing 

relevant information from the SAR data, facilitating robust and accurate classification results. 

8.1 Feature Extraction 

The proposed enhancement for SAR LC classification planned for Phase 2 aims to use a classification pipeline that 

incorporates a deep learning (DL) network applied to multitemporal SAR data. The approach involves segmenting 

the SAR time series into SAR seasonal subsequences (similar to optical composites, this approach differs by not 

using temporal filtering. Instead, it focuses on enhancing SAR textural features ) to capture temporal variations 

in land cover, which can significantly impact classification performance. Spatial features are first extracted from 

each seasonal segment, similar to the initial step carried out in Phase 1, and then processed using a deep learning 

framework to identify patterns and characteristics relevant for classification. 

The methodology supports a flexible approach by working on spatial subsets of the data, allowing for 

comprehensive geographical coverage while managing the computational complexity of large-scale datasets. By 

focusing on multitemporal sequences, the approach leverages temporal information to improve the 

discrimination of land cover types that exhibit seasonal changes, such as agricultural fields, forests, and wetlands. 

To analyze and explore the spatial information contained within a single SAR image, whether using VH (vertical-

horizontal) or VV (vertical-vertical) polarization, a Docker-based application has been developed. This application 

provides a suite of spatial domain filters designed specifically for SAR image processing. The primary criterion for 

selecting these algorithms was their execution speed, making them suitable for rapid application across large 

stacks of SAR images. While these filters may not be the most precise compared to more computationally 

intensive methods, their ability to be applied quickly to extensive datasets offers a significant advantage for wide-

area processing, enabling efficient and timely analysis of large geographical regions. 

This section describes the algorithm used for extracting SAR features in the classification process. All spatial 

features descri ed  elow are applied to the “super image”, which is the output of the multi-temporal speckle 

denoising algorithm discussed in Section 4.1.3.  
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The features computation process involves the following steps: 

1. Pre-processing of SAR Time Series: the SAR time series is first subjected to pre-processing methods, 

including techniques for filtering and de-speckling as described in Section 4. These steps aim to reduce 

speckle noise, improve image quality, and enhance the signal-to-noise ratio. The choice of filters 

balances noise suppression with the preservation of spatial details. Pre-processing also involves 

calibration and geo-referencing to ensure that the images are consistent and comparable across time. 

2. Seasonal Aggregation of Images: the de-speckled images collected throughout the year are grouped 

based on seasons (e.g., winter, spring, summer, and autumn). For each season, the images are merged 

into a single composite image called “super-image”. This aggregation step serves as a trade-off: it helps 

retain multitemporal information critical for distinguishing seasonal variations in land cover while also 

reducing the computational load for the subsequent classification. The seasonal averaging helps to 

smooth out short-term variations in the data and enhances features that exhibit seasonal consistency, 

such as vegetation growth cycles. 

3. Feature Extraction from Multitemporal Sequence: once the seasonal composite images are generated, 

features are computed from the final multitemporal sequence. These features are designed to capture 

spatial and temporal patterns that are relevant for identifying various land cover classes, such as urban 

areas, water bodies, forests, and agricultural fields. 

The computed features are then used as inputs for classification algorithms, which may include traditional 

machine learning models (e.g., Random Forest) or deep learning networks (e.g., Attention Unet, Swin-Unet or 3-

Dimensional - Fully Convolutional Network (3D-FCN)) capable of learning complex patterns in the data. By 

leveraging both spatial and temporal characteristics, the approach aims to improve classification accuracy across 

diverse land cover types. These features are crucial inputs for the deep learning model, allowing it to learn 

complex patterns and improve classification accuracy across various land cover categories. 

8.1.1 Mean Filter 

The mean filter, a type of low-pass filter (LPF), is one of the simplest methods for image smoothing and is 

straightforward to implement. It is typically used as a convolution filter, where a kernel defines the size and shape 

of the neighborhood sampled to calculate the mean value. The core concept of mean filtering is to replace each 

pixel value in the image with the average of the pixel values within the specified neighbourhood, including the 

pixel itself. The filter window moves across the image pixel by pixel, covering the entire image. 

The use of mean filters in SAR images has been widely studied due to their ability to reduce speckle noise, a 

common issue in these images. Mean filtering, specifically local mean filtering, averages pixel values within a 

defined neighborhood, helping to smooth out the noise while retaining some image features. 

Research shows that traditional filtering methods like the mean filter can improve image quality by reducing 

random variations in pixel intensity caused by speckle noise. However, while mean filters are effective at 

averaging out noise, they may also blur significant details, particularly in high-frequency areas of the image [59], 

[60]. 

As a result, the noise becomes less noticeable, but the image appears "softened." In theory, bright and dark 

speckle pixels within the filter window can cancel each other out, especially as the filter window size increases 

(e.g., 7x7 or 9x9), which can enhance noise reduction. However, larger filter sizes also tend to blur the image, 

causing a loss of fine details and spatial resolution. For this reason, smaller filter sizes such as 3x3 or 5x5 are often 

recommended for a balance between noise reduction and detail preservation. 

Mathematically, for a given pixel at coordinates (𝑖, 𝑘) in the SAR super image 𝑿, the output pixel value 

𝑥𝑀𝑒𝑎𝑛(𝑖, 𝑘) can be defined as: 

𝑥𝑀𝑒𝑎𝑛(𝑖, 𝑘) =
1

𝐷
∑ 𝑥(𝑖′, 𝑘′)

(𝑖′,𝑘′)∈𝒩
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Where 𝒩 is the neighborhood defined by the kernel size (e.g., 3x3, 5x5), 𝐷 is the total number of pixels in the 

neighborhood, and (𝑖′, 𝑘′) are the coordinates of the pixels in the neighbourhood around (𝑖, 𝑘). 

Mean filtering is not suitable for removing impulse noise, such as salt-and-pepper noise, where pixel values differ 

significantly from their surroundings. In such cases, a median filter is more effective. The median filter replaces 

the central pixel with the median of its neighbourhood, preserving edges and reducing noise while retaining 

important image features.   

8.1.2 Median Filter 

The median filter is widely used for noise reduction in images, like the mean filter; however, it often excels in 

preserving useful image details. Like the mean filter, the median filter processes each pixel individually, 

examining its neighbouring pixels to determine if it is representative of the surrounding area. Rather than 

replacing the pixel value with the mean of its neighbours, the median filter substitutes it with the median value. 

This method is especially effective at retaining important features such as edges, step changes, and ramps, 

making it suitable for tasks where edge preservation is criticaly, as it minimizes the risk of losing significant 

structural details while still reducing noise levels [61]. 

To compute the median, the pixel values in the neighbourhood are first sorted in numerical order, and the middle 

pixel value is then selected to replace the current pixel. This approach has two main benefits: 

1. Robustness Against Outliers: the median is less affected by extreme values, ensuring that noise 

reduction is achieved without distorting the image. 

2. Edge Preservation: As the median corresponds to one of the existing pixel values in the neighbourhood, 

it avoids creating unrealistic pixel values, which is beneficial for maintaining sharp edges compared to 

the mean filter [62]. 

It is important to highlight that while the median filter preserves edges, it can still result in the removal or 

suppression of smaller or linear features, similar to its effect on speckle noise. For example, a 3×3 median filter 

can effectively reduce noise but may slightly degrade the overall image quality. In contrast, a larger 7×7 median 

filter can completely eliminate noisy pixels, though this may cause the image to appear "blotchy." A more 

balanced approach is to use a 3×3 or 5×5 median filter and apply it multiple times, achieving significant noise 

reduction while retaining more image details [63]. 

For a given pixel at coordinates (𝑖, 𝑘) in a SAR image super image 𝑿, the output pixel value 𝑥Median(𝑖, 𝑘) after 

applying a median filter with a kernel of size 𝑊 ×𝑊 can be mathematically expressed as: 

𝑥Median(𝑖, 𝑘)  =  median { 𝑥(𝑖′, 𝑘′)   |   (𝑖′, 𝑘′)  ∈ 𝒩(𝑖, 𝑘) } 

where 𝒩(𝑖, 𝑘) is the neighbourhood defined by the kernel centered at pixel (𝑖, 𝑘), the set { 𝑥(𝑖′, 𝑘′) } contains 

the pixel values within the kernel surrounding the pixel (𝑖, 𝑘). The median function selects the middle value from 

the sorted pixel values in the neighbourhood. 

For a 3 × 3 kernel, the neighbourhood includes the pixels from (𝑖 − 1, 𝑘 − 1) to (𝑖 + 1, 𝑘 + 1). If the number of 

pixels is odd, the median is the middle value; if even, practical implementations usually select a value from the 

neighbourhood rather than averaging the two central values.  

In SAR data processing, the median and mean filters have limited effectiveness due to the multiplicative nature 

of speckle noise, which correlates with signal intensity. Both filters are non-adaptive and do not consider the 

specific characteristics of speckle noise. Adaptive filters like the Lee filter, which adjust based on local mean and 

variance within a moving window, offer more effective noise reduction tailored to SAR image characteristics. 
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8.1.3 Maximum and Minimum Filters 

Minimum and maximum filters, known as erosion and dilation filters respectively, are morphological filters that 

operate on a neighbourhood (window) around each pixel, defined by a specified radius. For instance, a radius of 

1 corresponds to a 3x3 window, while larger radii yield larger windows (e.g., 5x5 or 7x7). These filters are shift-

invariant, meaning their effects are consistent across all pixel positions. The minimum filter (erosion) replaces 

the central pixel with the lowest intensity value in the neighbourhood, expanding dark areas and contracting 

bright regions. Conversely, the maximum filter (dilation) replaces the central pixel with the highest intensity 

value, expanding bright areas and reducing dark regions, thus aiding in image enhancement, feature extraction, 

and noise reduction [64]. 

Mathematically, for a pixel at (𝑖, 𝑘) in the SAR super image 𝑿, with an 𝑊 ×𝑊 neighbourhood 𝒩: 

• The minimum filter is given by 𝑥min(𝑖, 𝑘) = min
(𝑖′,𝑘′)∈𝒩

𝑥 (𝑖′, 𝑘′) 

• The maximum filter is given by 𝑥max(𝑖, 𝑘) = max
(𝑖′,𝑘′)∈𝒩

𝑥 (𝑖′, 𝑘′) 

Smaller windows (e.g., 3x3) preserve fine details, while larger windows (e.g., 5x5, 7x7) provide stronger effects, 

potentially connecting separate regions or removing small objects. Odd-sized windows ensure a central pixel for 

symmetry and ease of calculation.. 

In SAR imaging, these filters help manage speckle noise and enhance feature boundaries. Erosion suppresses 

isolated noise, while dilation highlights structural features like ridges or linear patterns, improving visibility and 

detail delineation. 

8.1.4 Max-Min Filter 

The Max-Min filter enhances image contrast by calculating the difference between the dilation and erosion 

(maximum and minimum) of the original image. For the SAR super image 𝑿, the filtered output output 𝑿max‑min 

at pixel (𝑖, 𝑘) is given by: 

𝑥max‑min(𝑖, 𝑘) = 𝑥max(𝑖, 𝑘) − 𝑥min(𝑖, 𝑘) 

where 𝑿max and 𝑿min are the results of applying maximum (dilation) and minimum (erosion) filters to the input 

image at pixel (𝑖, 𝑘), respectively. 

The Max-Min filter replaces each pixel with the difference between the highest and lowest intensity values within 

a specified neighbourhood, commonly using window sizes like 3x3, 5x5, or 9x9. A 9x9 window is typically used to 

balance smoothing while preserving spatial details. 

This filter sharpens edges and highlights texture by amplifying intensity variations within local neighbourhoods, 

making it valuable for tasks requiring detail enhancement. In SAR imaging, it helps improve feature recognition 

by reducing speckle noise and accentuating edges. The Max-Min filter's relation to morphological 

transformations, such as gradient filtering, adds to its utility in image processing where detail and noise 

suppression are important. 

8.2 Land Cover Classification 

The classification approach employed in this work utilizes a hierarchical method to extract specific land cover 

classes, followed by a general classification for the remaining ones. The procedure is organized as follows: 

• The process begins with isolating classes that can be easily identified using a specific subset of features. 

Unsupervised classification methods are employed for this purpose, focusing currently on detecting 
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built-up areas and water bodies, which exhibit distinctive characteristics in the data. By utilizing 

unsupervised techniques at this stage, the complexity of the classification task is reduced, as easily 

recognizable areas are pre-classified, simplifying the subsequent classification of more complex regions. 

• Deep learning (DL) techniques are applied to classify the remaining land cover types based on a broader 

set of features. Three DL-based systems are evaluated: Attention Unet [65], Swin-Unet [66], or 3D-FCN 

[67]. The performance of these models will be compared to identify the most effective method for land 

cover classification. These DL systems utilize solely radar data, incorporating temporal and spatial 

synthetic features derived from annual series organized into seasonal clusters. Instead of using dense 

temporal image sequences, the synthetic features are input into the DL network. This methodology not 

only captures spatial information about the scenes but also integrates multitemporal data through 

seasonal partitioning, enhancing the model's ability to discern complex land cover patterns. 

This structured approach effectively combines unsupervised and supervised classification methods, leveraging 

the strengths of each to improve overall classification accuracy in land cover mapping. 

The LC information from the Map Of LC Agreement (MOLCA) [38] will be used to build the training set for the DL 

approach. 

8.2.1 Urban EXTent (UEXT) Algorithm 

The Urban EXTent (UEXT) algorithm [68] primarily focuses on identifying artificial structures, such as buildings, 

which manifest as bright points in multitemporally averaged and despeckled SAR image datasets. When the 

temporal intervals of interest contain no more than one dataset, the algorithm may operate on single SAR 

images. 

The process begins by selecting artificial structures associated with the highest normalized backscattered power 

values as "seed pixels." Following this selection, an iterative flooding algorithm is applied to the neighborhood 

of these seed pixels until a predefined lower threshold is reached. To mitigate the risk of false positives, 

particularly in mountainous areas, a series of post-processing steps are executed, which also incorporate the 

DEM of the region. 

In the approach described in [68], several intermediate steps have been streamlined to reduce computational 

demands. Instead of the iterative flooding technique, a single watershed algorithm has been introduced. In this 

refined method, the identified seed pixels serve as "markers" for the watershed algorithm, while the saliency 

map is generated using an occurrence data range filter applied to the SAR datasets. This filter operates with a 

3x3 pixel window, carefully chosen to maintain the spatial resolution of the data. 

 

Figure 27. The block diagram workflow for the UEXT algorithm. 

The workflow is visually summarized in Figure 27 and involves the following key steps: 

• Temporal averaging enhances urban features. 
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• Seed pixels are identified by thresholding the average image. 

• A saliency map is generated using a range filter. 

• The watershed algorithm segments urban regions using the seed pixels as markers. 

• The final output is the urban extent map. 

The first step consists of computing the average across the datasets over the specified time period. Given a set 

of SAR images over time, let 𝑥(𝑖, 𝑘, 𝑡) represent the backscatter intensity for the pixel at coordinates (𝑖, 𝑘) at 

time 𝑡. The temporal average over 𝑇 SAR images is: 

𝑥av𝑔(𝑖, 𝑘) =
1

𝑇
∑𝑥(𝑖, 𝑘, 𝑡)

𝑇

𝑡=1

 

This operation takes advantage of the coherent response of urban areas along the temporal axis, resulting in 

bright backscattering pixels within human settlements. In contrast, vegetated areas typically exhibit seasonal 

variations in backscattered values, leading to lower average values. 

The resulting image is employed in two ways: first, it identifies seed pixels through hard thresholding; second, it 

generates a saliency map via the data range filter. This filter accentuates urban areas, and the preceding low-

pass filter ensures that the map reflects homogeneous regions. 

A threshold 𝑇ℎ is applied to the averaged image 𝑿avg to identify the seed pixels that correspond to bright, 

artificial structures: 

Seed(𝑖, 𝑘) = {
1, 𝑥av𝑔(𝑖, 𝑘) > 𝑇ℎ

0, otherwise
 

An occurrence data range filter is applied to generate a saliency map Sal(𝑖, 𝑘), based on the range of pixel values 

within a predefined neighborhood: 

Sal(𝑖, 𝑘) = max
𝑡
𝑥 (𝑖, 𝑘, 𝑡) − min

𝑡
𝑥 (𝑖, 𝑘) 

This filter highlights urban regions by emphasizing areas with less temporal variability. 

The final stage involves the watershed algorithm, where the identified seed pixels expand within the saliency 

map, culminating in the production of the final urban extent map. The watershed algorithm is applied using the 

seed pixels as markers. A typical mathematical formulation for the watershed algorithm is based on the concept 

of region-growing from the markers. The saliency map Sal(𝑖, 𝑘) is used as a gradient image, and the goal is to 

segment it into homogeneous regions. The watershed function 𝑊(𝑖, 𝑘) partitions the image into regions 

corresponding to the urban areas: 

𝑊𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑(𝑖, 𝑘) = argmin(Sal(𝑖, 𝑘)) 

This function segments the saliency map based on local minima and grows regions around the seed pixels. 

Finally, the urban extent map 𝑼 is the result of applying the watershed algorithm on the saliency map using the 

identified seeds: 

𝑢(𝑖, 𝑘)  =  {
1  if 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 (𝑖, 𝑘) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎𝑛 𝑢𝑟𝑏𝑎𝑛 𝑟𝑒𝑔𝑖𝑜𝑛
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This output map represents the urban areas as a binary image, where urban regions are marked as 1 and non-

urban regions as 0. 

This methodological refinement not only enhances the efficiency of urban area detection using SAR imagery but 
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also maintains high accuracy in distinguishing built environments from surrounding landscapes. 

8.2.2 Water Extraction Algorithm 

The water extraction method applied in this project builds on the approach introduced in [69], with the main 

steps illustrated in Figure 28. 

 

Figure 28. The comprehensive workflow for detecting both temporary and permanent water bodies from SAR imagery 
involves a series of sequential processing steps. 

The process is designed to enhance the accuracy of water surface detection from SAR imagery, particularly by 

employing multitemporal denoising, feature extraction, clustering, and post-processing techniques. 

Initially, the SAR image stack is subjected to a multitemporal denoising process, described in Section 4.1.3. This 

step reduces speckle noise across the temporal series, improving the signal quality for feature extraction.  

A variety of statistical and temporal features are calculated to represent the temporal dynamics of water bodies. 

These features include: 

• Temporal composites, created by averaging the SAR images over the entire temporal series or specified 

time windows. 

• Statistical metrics, such as the temporal mean, minimum, maximum, and variance, which provide 

insights into the variation of backscatter intensity over time. The features are computed as follow: 

o Temporal mean: 𝜇SAR(𝑖, 𝑘) =
1

𝑇
∑ 𝑥(𝑖, 𝑘, 𝑡)𝑇
𝑡=1  

o Temporal variance: σSAR
2(𝑖, 𝑘) =

1

𝑇
∑ (𝑥(𝑖, 𝑘, 𝑡) − μSAR(𝑖, 𝑘))

2𝑇
𝑡=1  

o Minimum and maximum values over the time: 𝑥SAR_min(max)(𝑖, 𝑘) = min
𝑡
(max

𝑡
) 𝑥SAR (𝑖, 𝑘, 𝑡) 

where 𝑥SAR(𝑖, 𝑘, 𝑡) is the pixel intensity at position (𝑖, 𝑘) for the 𝑡-th time step in the SAR image series, 

and 𝑇 is the total number of images. 

The algorithm can be improved by adding an optional step that enables the integration of SAR and optical data. 

This extension effectively addresses the limitations of using SAR data alone and helps resolve common 

misclassification issues. 

SAR provides key advantages, such as cloud penetration and the ability to collect data in all weather and at night. 

However, it faces challenges in accurately mapping water bodies in areas with specific geomorphological 

features, like narrow urban rivers or flat, sandy regions, which can cause signal reflections and misclassification. 

In contrast, optical data from the Sentinel-2 mission offers detailed spectral information that helps distinguish 

land cover types, including vegetation and water. However, it is limited by cloud cover, restricting continuous 

monitoring in frequently cloudy regions. 
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Leveraging both SAR and optical data capitalizes on their complementary strengths, significantly enhancing 

mapping accuracy. This integration merges features from both datasets, enhancing the model's ability to 

distinguish between water and non-water surfaces under diverse environmental conditions. 

The expansion methodology employs a sophisticated integration of features derived from both SAR and optical 

sources to significantly enhance mapping precision. By combining the unique strengths of these two data types, 

the approach takes advantage of ability of SAR to penetrate cloud cover and provide consistent information in 

various weather conditions, while utilizing the high-resolution visual detail offered by optical imagery. This 

synergistic relationship allows for a more comprehensive analysis, enabling the accurate identification and 

classification of land cover types, including the distinction between water and non-water surfaces, under a wide 

range of environmental scenarios. Ultimately, this integration leads to improved accuracy and reliability in 

mapping applications. Optical features are extracted and integrated into the existing SAR feature set that was 

previously computed.  

Let 𝑥opt(𝑖, 𝑘, 𝑏) represent the optical reflectance at spatial coordinates (𝑖, 𝑘) for a specific band 𝑏, the Normalised 

Difference Vegetation Index (NDVI) and Normalised Difference Water Index (NDWI) are defined as follows: 

• Normalised Difference Vegetation Index (NDVI): This index measures vegetation health and density by 

comparing the reflectance in the near-infrared (NIR) and red bands. It is useful for identifying areas 

where vegetation may obscure or interact with water surfaces. 

NDVI(𝑖, 𝑘) =
𝑥opt(𝑖, 𝑘,NIR)− 𝑥opt(𝑖, 𝑘,RED)

𝑥opt(𝑖, 𝑘,NIR)+ 𝑥opt(𝑖, 𝑘,RED)
 

• Normalised Difference Water Index (NDWI): The NDWI assesses the presence of water by comparing the 

reflectance in the green and NIR bands. It helps to detect water bodies even in complex environments 

where water may be mixed with other land cover types. 

NDWI(𝑖, 𝑘) =
𝑥opt(𝑖, 𝑘,GREEN)− 𝑥opt(𝑖, 𝑘,NIR)

𝑥opt(𝑖, 𝑘,GREEN)+ 𝑥opt(𝑖, 𝑘,NIR)
 

Additionally, other statistical metrics are derived from the red, green, and blue (RGB) bands, such as maximum 

and minimum reflectance values, as well as temporal variance. These statistics are employed to improve the 

model's sensitivity to different land cover types and to refine the classification process. 

Compute statistical measures, such as maximum 𝑥opt_max(𝑖, 𝑘, 𝑏), minimum 𝑥opt_min(𝑖, 𝑘, 𝑏), and variance 

𝜎opt
2 (𝑖, 𝑘, 𝑏) for the red, green, and blue bands over the time window 𝑇:  

 𝑥opt_max(𝑖, 𝑘, 𝑏) = max𝑡=1
𝑇 𝑥opt (𝑖, 𝑘, 𝑏, 𝑡) 

𝑥opt_min(𝑖, 𝑘, 𝑏) = min𝑡=1
𝑇 𝑥opt (𝑖, 𝑘, 𝑏, 𝑡) 

σopt
2 (𝑖, 𝑘, 𝑏) =

1

𝑇
∑(𝑥opt(𝑖, 𝑘, 𝑏, 𝑡) − μopt(𝑖, 𝑘, 𝑏, 𝑡))

2
𝑇

𝑡=1

 

where μopt(𝑖, 𝑘, 𝑏, 𝑡) is the mean reflectance over time for band 𝑏. 

Construct a combined feature vector 𝑭(𝑖, 𝑘) at each spatial location (𝑖, 𝑘) by concatenating features derived 

from both SAR and optical data: 

𝑭(𝑖, 𝑘) = [𝜇SAR(𝑖, 𝑘), 𝑥SAR_min(𝑖, 𝑘), 𝑥SAR_max(𝑖, 𝑘),NDVI(𝑖, 𝑘),NDWI(𝑖, 𝑘), 𝑥opt_max(𝑖, 𝑘, 𝑏), 𝑥SAR_min(𝑖, 𝑘, 𝑏), σopt
2 (𝑖, 𝑘, 𝑏)] 



 

Ref D2.2 - ATBD 

 
Issue Date Page 

1.1 16/12/2024 47 

 
Then the features are used to train a k-NN algorithm 4 clusters. The value of the clusters is selected to account 

for the expected clusters corresponding to water, vegetation, bare soil, and impervious surfaces. 

𝜉 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑧∈[1,4]‖F(𝑖, 𝑘) − F𝑧‖ 

where 𝜉 represents the cluster label assigned to the pixel (𝑖, 𝑘), F(𝑖, 𝑘) is the feature vector at pixel (𝑖, 𝑘), and 

F𝑧 is the centroid of the 𝑧-th cluster. 

A 300 m resolution water mask from the ESA CCI land cover map [70] is resampled to 10 m, dilated with a 3 x 3 

kernel window and used to guide the selection of training samples. From each tile, 10000 pixels representing 

water and non-water regions are randomly sampled for training. Once the clusters are formed, the results are 

compared against the water mask from the ESA-CCI map. The cluster that most closely matches the water 

distribution in the reference map is designated as the "water cluster." 

Several refinements are applied to improve the classification accuracy. Digital Surface Model (DSM) filtering is 

applied by calculating the slope for each pixel. Areas with steep slopes, which may indicate radar shadows in hilly 

or mountainous regions, are excluded from the final water body map to improve the accuracy of the water 

surface detection. Then, an "opening" operation (erosion followed by dilation) is performed on the slope-filtered 

output: 

𝑾𝑚𝑎𝑝=Opening(𝑩𝒊𝒏) = (Erosion(𝑩𝒊𝒏, 𝑺)) ⊕ 𝑺 

where 𝑩𝒊𝒏 is the binary water mask, 𝑺 is the structuring element, and ⊕ denotes the dilation operation. Hence,  

𝑾𝑚𝑎𝑝 is the final water map after the opening operation. This mechanism helps eliminate small isolated false 

positives without significantly affecting the extent of larger water bodies. 

This water detection workflow efficiently combines multitemporal SAR information, clustering techniques, and 

morphological operations to produce reliable water body maps. In addition, the dual-sensor approach improves 

the ability of the model to accurately distinguish water bodies from other land surfaces, particularly in 

challenging environments. In flat, sandy regions, SAR signals can reflect away from the sensor, leading to dark 

images misclassified as non-water areas. By integrating optical data, the model gains additional spectral 

information, reducing false positives and enhancing water body mapping accuracy. 

Using SAR data alone, the model struggled to detect narrow rivers in urban areas due to interference from 

structures and vegetation. The incorporation of optical indices provided critical spectral details, allowing better 

identification of these waterways. 

This fusion of SAR and optical data strengthens water body mapping models, enabling more precise detection 

and classification across diverse landscapes. It is especially valuable for monitoring water resources, assessing 

climate change impacts, and informing water management policies, offering a comprehensive solution for global 

water monitoring efforts. 

The DSM filtering and opening operations help refine the results, enhancing the classification accuracy across 

diverse landscapes.  

8.2.2.1 Water Masking 

Misclassification of bare soil as water in remote sensing imagery is a well-documented challenge in the field of 

remote sensing, attributable to several interrelated factors. One primary issue arises from the spectral 

similarities between bare soil and water, which can confound classification algorithms. Wet bare soil, in 

particular, exhibits reflectance properties that closely mimic those of water bodies, especially when utilizing 

limited spectral bands. Research indicates that smooth, wet soil can produce low backscatter responses, further 

complicating the distinction between these two land cover types. 

In SAR imagery, the texture and moisture content of bare soil significantly influence backscatter characteristics, 
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often causing it to appear similar to water. For example, smooth or saturated soil surfaces can reflect radar 

signals in a manner that resembles water bodies. SAR systems, which are particularly sensitive to surface 

roughness, may misinterpret these textures, leading to classification errors. 

Seasonal variations in soil conditions also contribute to this misclassification. Following rainfall, the appearance 

of bare soil can change dramatically, making it resemble water. This variability poses a challenge for classification 

algorithms that are trained on datasets not representative of such conditions. 

A pertinent study [71] explored the effectiveness of Sentinel-1 SAR imagery in distinguishing various land cover 

types in a tropical coastal environment, specifically the Douala region in Cameroon. The research emphasized 

the critical role of textural analysis due to the inherent speckle noise present in SAR images, which can result in 

misclassification. The findings highlighted that SAR data often struggles to accurately separate certain classes, 

particularly between water and bare soil—two crucial categories for accurate land cover classification in coastal 

regions. 

To mitigate the issue of misclassification, a masking operation is applied during the post-processing phase of the 

water map. Let 𝑊𝑚𝑎𝑝 be the final binary water map output of the water detector in Section 8.2.2, the masking 

can be expressed as follow: 

𝑤𝑚𝑎𝑠𝑘𝑒𝑑(𝑖, 𝑘) = {
𝑤𝑚𝑎𝑝(𝑖, 𝑘), if 𝑚𝑎𝑠𝑘(𝑖, 𝑘) = 0

0, if 𝑚𝑎𝑠𝑘(𝑖, 𝑘) = 1
 

Where 𝑚𝑎𝑠𝑘(𝑖, 𝑘) is the binary mask and 𝑤𝑚𝑎𝑠𝑘𝑒𝑑(𝑥, 𝑦) is the binary water map at pixel (𝑖, 𝑘) after the masking 

operation. The mask is generated from a LC map (e.g., ESA CCI LC at 300m, or the Copernicus Global Land Cover 

Layers (CGLS) [72] at 100m resolution) after identifying the specific LC value associated with the bare soil class. 

Here, 𝑚𝑎𝑠𝑘(𝑖, 𝑘) = 1 for bare soil pixels and 𝑚𝑎𝑠𝑘(𝑖, 𝑘) = 0 otherwise. 

This process involves analyzing the LC map to isolate areas classified as bare soil, which helps in accurately 

distinguishing these regions from other land cover types. The resulting mask can then be used for further analysis, 

such as assessing soil erosion, land use changes, or environmental monitoring. This technique aims to enhance 

the accuracy of land cover classification by refining the distinction between water and bare soil, thereby 

improving overall interpretability and reliability of remote sensing data. 

8.2.2.2 Water Dynamics Analysis: Seasonal vs. Permanent Water Identification 

A dedicated module was developed to differentiate between seasonal and permanent water land cover (LC) 

classes. This distinction is achieved by applying the water extraction method outlined in Section 8.2.2 to a time 

series of monthly SAR images. As a result, a series of monthly water maps is generated, with each map 

representing the spatial extent of water bodies for a specific month.  

To analyze the seasonal dynamics of water presence, a logical XOR (exclusive OR) operation is performed across 

all monthly water maps. This operation effectively highlights areas where water is present in some months but 

absent in others, thereby identifying seasonal water bodies. Following this, a thresholding operation is applied 

to the results of the XOR operation, denoted as 𝑾𝑋𝑂𝑅. 

The thresholding process is critical for establishing the criteria used to differentiate between transient (seasonal) 

and consistent (permanent) water presence. The classification rule can be mathematically expressed as follows: 

𝑤𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦(𝑖, 𝑘) = {
1, if 5 ≤ 𝑾𝑋𝑂𝑅(𝑖, 𝑘) < 9 𝑚𝑜𝑛𝑡ℎ𝑠
2, if 𝑾𝑋𝑂𝑅(𝑖, 𝑘) ≥ 9 𝑚𝑜𝑛𝑡ℎ𝑠
0, otherwise
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In this equation, 𝑤𝑋𝑂𝑅(𝑖, 𝑘) represents the water presence derived from the XOR logical operation at pixel (𝑖, 𝑘), 

while 𝑾𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦  produces the final water classification map. The values in this final map are defined as follows: 

a value of 1 indicates areas of seasonal water presence, a value of 2 denotes permanent water bodies, and a 

value of 0 signifies non-water areas. This systematic approach allows for an accurate characterization of water 

dynamics over time, enhancing our understanding of hydrological processes in the study area. 

8.2.3 Deep Learning Architectures 

Land cover (LC) mapping is an essential tool used in various fields, including forest monitoring, agriculture, urban 

development, flood risk assessment, and climate change analysis. It supports the development of effective land 

use policies and the evaluation of ecosystem health by enabling the monitoring of environmental conditions 

across diverse regions. 

The integration of deep learning (DL) methods, especially Convolutional Neural Networks (CNNs), has 

significantly advanced the field of remote sensing for LC mapping. CNNs are particularly well-suited for this task 

because they can directly extract local spatial features from satellite imagery [73], [74]. Architectures such as 

UNet, which employ encoder-decoder structures with skip connections, have proven highly effective in 

segmenting images while preserving spatial details. 

Innovative methods also involve combining different types of neural networks to exploit their respective 

strengths. For example, hybrid models like Fully Convolutional Networks (FCNs) integrated with Convolutional 

Long Short-Term Memory (ConvLSTM) networks can combine spatial and temporal information from 

multitemporal SAR data, significantly improving classification accuracy over traditional approaches [75]. 

The following sections will discuss three deep learning (DL) architectures—Attention UNet, Swin UNet, and 3D-

FCN—considered for mapping Synthetic Aperture Radar (SAR) datasets. These architectures address the unique 

challenges associated with SAR data, such as noise, speckle, and the complex nature of radar backscatter signals. 

Each architecture brings specific capabilities to enhance feature extraction, capture spatial and temporal 

information, and improve land cover classification accuracy. 

These DL architectures leverage cutting-edge techniques to handle SAR data's distinct properties, providing 

robust and scalable solutions for land cover mapping across diverse environments and timeframes. 

8.2.3.1 Attention Unet 

The Attention Unet [65] architecture extends the traditional UNet [76] by incorporating attention mechanisms 

that focus on the most relevant parts of the input data. It maintains the standard structure of U-Net of a 

contracting path followed by an expansive path, allowing the network to capture both global context and fine 

details, which is especially useful for tasks such as image segmentation. 

The main improvement comes from incorporating an attention gate, which focuses on relevant regions while 

suppressing irrelevant feature activations. This attention mechanism is integrated as a skip connection within the 

U-Net framework, making it particularly effective for tasks like extracting built-up areas from satellite images, 

where it allows the model to concentrate on distinct building patterns and structures, resulting in more accurate 

height estimations. 
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Figure 29. Architecture of an attention gate used in the Attention UNet model [77]. 

The attention block is mathematically described according to the notation shown in Figure 29 and in the work 

[77], where two inputs are processed: 𝒈, vector of the features from the decoder or expanded path, and 

𝒙𝒊, features from the encoder or compressed path, at a specific depth 𝑖 − 𝑡ℎ in the network. These feature 

representations undergo separate 1 × 1 convolutions, allowing the model to learn how to refine feature 

activations: 

 

�̃� = 𝑾𝑔 ∗ 𝒈 

�̃�𝒊 = 𝑾𝑥 ∗ 𝒙
𝑖 

Where 𝑾𝑔 and 𝑾𝑥 are learnable weights of the 1 × 1 convolution layers, and ∗ represents the convolution 

operation. 

The outputs of these convolutions are summed element-wise to combine the refined feature maps: 

𝝍 = �̃� + �̃�𝑖 

Next, the summed features are passed through a Rectified Linear Unit (ReLU) activation function, commonly used 

in deep learning models, particularly in CNNs. It introduces non-linearity into the model, enabling the network 

to learn complex patterns: 

𝛙′ = ReLU(𝛙) 

A Batch Normalization layer is then applied to stabilize the training process: 

𝛙′′ = BatchNorm(𝛙′) 

The normalized output is fed into another 1 × 1 convolution followed by a Sigmoid activation function to create 

an attention map 𝛟: 

𝛟 = 𝒮(𝛙′′) 

where 𝒮(∙) denotes the Sigmoid function. At this stage, a resampling operation is performed using an additional 

1 × 1 convolution layer to reduce the dimensionality of the attention map, ensuring it matches the spatial 

dimensions of the original input features: 

𝛒 = 𝑾ρ ∗ 𝛟 

Here, 𝑾𝜌 represents the learnable weights of the resampling convolution. 

Finally, the refined attention map 𝛒 is multiplied element-wise with the original input features 𝒙𝑖, selectively 

enhancing important regions: 

𝒙out
𝑖 = 𝛒 ⋅ 𝒙𝒊 

The output 𝒙out
𝑖  is a weighted version of the input, emphasizing relevant features that are critical for the 
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downstream task. This attention mechanism allows the network to dynamically adjust its focus based on the 

input data, leading to improved segmentation performance and more accurate land cover classification, 

especially in complex scenarios like urban area extraction from satellite imagery. 

In the context of SAR data, attention mechanisms help reduce the impact of noise and highlight significant 

features for land cover mapping. By dynamically weighting different regions of the image, Attention UNet can 

better capture subtle variations in land cover types, leading to more accurate segmentation and classification 

results. 

8.2.3.2 Swin Unet 

Swin UNet integrates Swin Transformers, a form of Vision Transformer (ViT), into the UNet framework. Unlike 

traditional convolutional methods, Swin Transformers utilize self-attention mechanisms to capture long-range 

dependencies and global context within the image. This architecture partitions the image into non-overlapping 

windows and performs self-attention within each window while allowing for cross-window connections. 

 
Figure 30. The Swin-UNet architecture, applied to the land cover (LC) classification task, integrates distinctive aspects of 
the Swin Transformer with the UNet architecture to achieve optimal performance. This combination leverages the Swin 
Transformer's ability to capture long-range dependencies and multi-scale contextual information, while the UNet structure 
ensures precise localization and segmentation capabilities. 

 

The Swin-Unet architecture consists of three primary components: the encoder, the bottleneck, and the decoder. 

An illustrative diagram of the overall model is provided in Figure 30. 

The encoder employs multiple Swin Transformer layers [78], designed to hierarchically process the input images 

across a series of stages. Each stage utilises the shifted window self-attention mechanism [79], allowing the 

model to efficiently capture local interactions in the initial stages and progressively build towards understanding 

larger areas of the input image. This approach reduces the resolution of feature maps while increasing feature 

dimensions, facilitating a deep and comprehensive understanding of the input data. 

For a given input tensor 𝑿 ∈ 𝑅𝑃𝑡×𝐶ℎ, where 𝑃𝑡 is the number of patches and 𝐶ℎ is the number of channels, the 

self-attention output 𝑿𝑎𝑡𝑡_𝑜𝑢𝑡𝑝𝑢𝑡  can be formulated as: 

𝑿𝑎𝑡𝑡_𝑜𝑢𝑡𝑝𝑢𝑡 = Softmax (
𝑸 ∙ 𝑲𝒆𝒚𝑇

√𝑑𝑘𝑒𝑦
) ∙ 𝑽 

where: 

• 𝑸 = 𝑿 ∙ 𝑾𝑞, is the Query matrix 

• 𝑲𝒆𝒚 = 𝑿 ∙ 𝑾𝑘  is the Key matrix 

• 𝑽 = 𝑿 ∙ 𝑾𝑣 is the Value matrix 

• 𝑾𝑞 ,𝑾𝑘,𝑾𝑣 ∈ 𝑅
𝐶ℎ×𝑑𝑘𝑒𝑦   are learnable weight matrices. 

• 𝑑𝑘𝑒𝑦  is the dimensionality of the keys. 

The self-attention output, 𝑿𝑎𝑡𝑡_𝑜𝑢𝑡𝑝𝑢𝑡, is applied during the encoder stage of the Swin UNet architecture. 
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Specifically, it is used in the process of self-attention within the Swin Transformer layers, where it captures local 

interactions and progressively builds an understanding of larger areas of the input image. This output is part of 

the hierarchical processing done in the encoder, where multiple Swin Transformer layers employ shifted window 

self-attention to analyze the input tensor, 𝑿, representing the image patches and channels. The computed self-

attention output helps encode information that contributes to feature extraction and down-sampling, which is 

essential for the network's understanding of global contextual relationships in the image. 

The bottleneck acts as the crucial transition point between the encoder and decoder modules. It typically 

comprises one or more Swin Transformer layers located at the deepest part of the network, focusing on 

integrating and compressing the high-level features learned by the encoder. 

Let 𝑭𝑒𝑛𝑐  be the feature output from the last encoder layer, the bottleneck layer can be represented as: 

𝑭𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 = LayerNorm(𝑭𝑒𝑛𝑐𝑾𝑏 + 𝒃𝑏𝑖𝑎𝑠) 

Where 𝑾𝑏 is a weight matrix, and 𝒃𝑏𝑖𝑎𝑠 is a bias vector for the bottleneck layer. 

The decoder then gradually expands the encoded features back to the original image resolution. It employs Swin 

Transformer layers arranged in stages, each incorporating a patch-expanding layer to progressively increase the 

spatial resolution of the feature maps. Using a patch-expanding layer, the output features from the bottleneck 

𝑭𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘   are expanded: 

𝑭𝑑𝑒𝑐
(𝑖) = PatchExpand(𝑭𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘) 

where 𝑭𝑑𝑒𝑐
(𝑖)   represents the feature maps at decoder stage 𝑖. 

Additionally, skip connections from corresponding encoder stages are integrated at each level of the decoder, 

aiding in the restoration of spatial details often lost during down-sampling in the encoder. If 𝑭𝑒𝑛𝑐
(𝑖)   is the output 

from the encoder at stage 𝑖: 

𝑭𝑑𝑒𝑐
(𝑖) = Concat(𝑭𝑑𝑒𝑐

(𝑖) , 𝑭𝑒𝑛𝑐
(𝑖) ) 

The final segmentation output 𝑿𝑠𝑒𝑔  can be produced by applying a 1 × 1 convolution followed by a softmax 

activation to the output of the last decoder layer: 

𝑿𝑠𝑒𝑔 = Softmax(𝑭𝑑𝑒𝑐
(𝑛)𝑾𝑜𝑢𝑡 + 𝒃𝑜𝑢𝑡) 

Where 𝑾𝑜𝑢𝑡 and 𝒃𝑜𝑢𝑡  are learnable weights and biases for the output layer. 

For SAR data, Swin UNet offers an advantage in understanding global contextual relationships, which is crucial 

for distinguishing complex land cover patterns across large spatial areas. 

8.2.3.3 3-Dimensional - Fully Convolutional Network (3D-FCN) 

The 3D-FCN extends conventional 2D convolutional methods by adding a third dimension to the data input, 

allowing for the processing of multitemporal SAR datasets. This architecture captures temporal dynamics in the 

data, making it well-suited for applications where changes over time are significant, such as vegetation 

monitoring or urban expansion analysis. The 3D convolutions enable the network to extract spatial-temporal 

features simultaneously, providing a more comprehensive representation of the observed scene and improving 

classification accuracy for complex land cover types. 

For the land cover mapping using SAR data, the methodology from [67] was adopted as a foundation. The 

referenced work provides a framework, shown in Figure 31, for utilizing SAR time series to classify different land 

cover types by capturing unique spatial and temporal characteristics. This approach was selected because of its 

ability to effectively leverage SAR sensitivity of the data to surface structure and moisture, making it suitable for 
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distinguishing between various land cover classes under diverse environmental conditions. By building upon this 

methodology, the current study enhances the classification accuracy and scalability for broader geographic areas 

and more detailed land cover categories. 

 

Figure 31. Block diagram of the land cover mapping procedure in [67]. 

The 3D Fully Convolutional Network (FCN) architecture in [67] consists of several key components and 

mathematical operations. The network's design includes a 3D ResNet-50 backbone and layers optimized to 

extract both spatial and temporal features from multitemporal Sentinel-1 SAR data. Please note that the notation 

and formulation in this section are the same as in the work [67]. 

As illustrated in Figure 31, the DL architecture is composed of five primary layers. The initial layer applies a 

7 × 7 × 7 convolutional kernel with a stride of 𝑠 =  (1, 2, 2) and padding of 𝑝 =  (3, 3, 3) to input data sized 

1 × 𝑇 × 256 × 256, where 𝑇 represents the number of temporal images, resulting in the creation of 64 

activation maps. Let 𝑿in ∈ 𝑅
1×𝑇×256×256 be the input tensor, the output is: 

𝑿conv = Conv3D(𝑿in,𝑾conv, 𝑠, 𝑝) 

where 𝑾conv represents the convolutional weights. 

Following this, a 3D batch normalization step is implemented to standardise the output activations from the 

preceding convolutional neural network (CNN) layer, aligning them with a unit Gaussian distribution: 

𝑿𝒏𝒐𝒓𝒎 = BatchNorm(𝑿𝒄𝒐𝒏𝒗) 

where the normalization is done over the mean and variance of 𝑿𝒄𝒐𝒏𝒗. 

The next stage involves applying a ReLU activation function,  

𝑿𝑹𝒆𝑳𝒖 = max(𝟎, 𝑿𝒏𝒐𝒓𝒎) , succeeded by a 3 × 3 × 3 max-pooling operation to produce a down-sampled feature 

map, 𝑿𝒑𝒐𝒐𝒍 = MaxPool3D(𝟎, 𝑿𝑹𝒆𝑳𝒖). The resultant tensors are then processed through three layers, each 

consisting of two residual blocks. 
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Figure 32. Scheme of the two main residual blocks. 

The backbone of the network consists of two key types of residual blocks, in Figure 32, which are essential for 

enhancing feature extraction and facilitating gradient flow during training. 

The first block, depicted in Figure 32(a), performs an addition of the result obtained after the 3D convolution and 

batch normalization steps with the output of a downsampling operation directly applied to the input data. As 

shown in Figure 32(a), the convolutions with a stride of 𝑠 =  STR indicate that the stride varies across layers. In 

particular, a stride of 1 is used in layer 1, while a stride of 2 (for all axes) is applied in layers 2 and 3. The 3D 

convolution followed by batch normalization can be formulated as  

𝑿conv_res = Conv3D(𝑿in,𝑾res) + BatchNorm(𝑿in) 

The second block, in  Figure 32(b), differs from the first by omitting the downsampling operation, allowing the 

residual data from the yellow boxes to be added directly to the input: 

𝑿res = 𝑿conv_res + 𝑿skip 

Where 𝑿skip is either the original input or down-sampled input. 

Once all the backbone layers have been traversed, the data enters the fully convolutional network (FCN) head, 

which comprises a 30 × 3 × 3 convolutional kernel with a stride of 𝑠 =  (1, 1, 1) and no padding, generating 256 

activation maps. This is followed by another 3D batch normalization step  

𝑿conv_head = Conv3D(𝑿res,𝑾head) and a ReLU activation function,  

𝑿ReLu_head = max(0, 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑿conv_head)). A dropout layer is then incorporated to help prevent overfitting, 

with the probability 𝑝 of a neuron being deactivated set to 0.2. 

The final step employs a 1 × 1 × 1 convolutional kernel with a stride of 𝑠 =  (1, 1, 1) to produce a number of 

output maps 𝑀, corresponding to the number of classes. 

𝑿out = Conv3D(𝑿ReLu_head ,𝑾out) 

A dimension reduction layer is used to reshape the data into an 𝑀 × 14 × 14 data cube, facilitating the final 

pixel-wise classification. 

(a) 

(b) 



 

Ref D2.2 - ATBD 

 
Issue Date Page 

1.1 16/12/2024 55 

 
8.2.4 Posterior normalization 

Posterior normalization is the final step in the SAR classification process. This stage integrates the posterior 

outputs generated from the DL model for land cover classification, as well as outputs for built-up areas and water 

bodies. The normalization process is critical for ensuring that the combined outputs accurately reflect the 

probabilities of each class, thus facilitating effective interpretation and decision-making in remote sensing 

applications. 

This normalization process has been successfully implemented with support from the University of Genoa, which 

provided valuable expertise and resources throughout the development. 

Currently, the project focuses on a comprehensive evaluation and analysis of the performance of the UEXT and 

water extraction algorithms. This assessment examines the effectiveness of the three mentioned deep learning 

architectures in recognizing built-up and water classes, both seasonal and permanent. By systematically 

comparing the performance of these algorithms across various scenarios, the research team aims to identify the 

most effective approaches for accurately distinguishing between built-up areas and water bodies. This research 

is essential for enhancing applications in remote sensing and urban planning, ultimately contributing to improved 

environmental monitoring and resource management. 

Should the UEXT and water extraction algorithms demonstrate greater effectiveness in recognizing built-up and 

water classes, respectively, compared to the deep learning-based land cover classifiers, a final task will involve 

the normalization of the posteriors. The deep learning networks will be trained to recognize the land cover 

classes listed in Table 1, excluding built-up, seasonal, and permanent water classes, producing relevant posterior 

probability maps as output. 

The posteriors for built-up and water classes will be extracted from the built-up and water maps generated by 

the UEXT and water extractor outputs, respectively. However, both urban and water recognition approaches do 

not yield information about the probabilities due to the masking operation applied during the extraction process. 

To address this, a value known as the confidence index will be assigned to each pixel. This confidence index 

quantifies the reliability of the classification results. The assignment process can be mathematically represented 

as follows: 

• For a pixel identified as built-up: 

● 𝑐𝑏𝑢𝑖𝑙𝑡−𝑢𝑝(𝑖, 𝑘) = {
0.8, if the pixel is classified as built‑up
0.05, if the pixel is no built‑up

 

• For a pixel identified as water (both permanent and seasonal): 

● 𝑐𝑤𝑎𝑡𝑒𝑟(𝑖, 𝑘) = {
0.7, if the pixel is classified as water
0.05, if the pixel is no water

 

In the case of conflicting classifications (i.e., if a pixel is classified as both built-up and water), an average 

confidence index is assigned: 

𝑐𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑖, 𝑘) =
𝑐𝑏𝑢𝑖𝑙𝑡−𝑢𝑝(𝑖, 𝑘) + 𝑐𝑤𝑎𝑡𝑒𝑟(𝑖, 𝑘)

2
 

For example, if a pixel is classified as both built-up and water, it will receive a confidence index of 42.5%, 

reflecting the uncertainty in its classification. 

The final posterior probabilities are calculated by combining the confidence indices with the outputs from the DL 

model. Additionally, the normalization of the posterior probabilities takes into account that the values are 
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typically ranged between [0, 255]. This scaling ensures that the output probabilities are accurately represented. 

The normalized posterior for each pixel can be represented as: 

𝑝normalized(𝑖, 𝑘) =

{
 

 
254 × 𝑐𝑏𝑢𝑖𝑙𝑡−𝑢𝑝(𝑖, 𝑘), if classified as built − up

254 × 𝑐𝑤𝑎𝑡𝑒𝑟(𝑖, 𝑘), if classified as built − up

254 ×
(𝑝𝐷𝐿(𝑖, 𝑘) − 1)

254
× (1 − 𝑐𝑢𝑟𝑏𝑎𝑛(𝑖, 𝑘) − 𝑐𝑤𝑎𝑡𝑒𝑟(𝑖, 𝑘)), if classified as other land cover

 

Here, 𝑝𝐷𝐿(𝑖, 𝑘) represents the posterior probability output from the deep learning model for non-water and non-

built-up classes. 

Consequently, the normalized posterior image for the built-up areas will assign a value of 80% for those pixels 

recognized as built-up, and 5% for other pixels. Similarly, for the water class, a pixel recognized as water (either 

permanent or seasonal) will receive a value of 70%, while non-water pixels will have a value of 5%. 

Finally, the normalized output is written to the output posteriors image, where each pixel's value is computed 

and saved: 

𝑷𝑓𝑖𝑛𝑎𝑙 = (
254 ⋅ 𝑷𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

100
)+ 1 

By implementing these steps, the deep learning probabilities are normalized to account for the confidence 

indices, ultimately providing a unified SAR classification posterior map. This posterior map enhances the accuracy 

and reliability of land cover classification, facilitating better decision-making in remote sensing applications. 

9 Decision fusion 

The Decision Fusion processing chain includes multi-sensor fusion, which combines pixel-wise posteriors of the 
classification from optical and SAR data, spatial fusion to consider the spatial context, multi-temporal fusion that 
makes use of the information along the time axis, and spatial harmonization that ensures the spatial smoothness 
of the mosaicking results of adjacent tiles (granules). Each subsection will start with a brief summary of the 
previous approach from Phase 1 (as the starting point), followed by the adopted methodology for Phase 2, be it 
an extension or a new different method. 

9.1 Multi-sensor and spatial fusion 
The decision fusion processing chain receives pixel-wise posterior probabilities from both the optical and SAR 
processing chains. Based on the sources of the data, there are three subsets of classes that are taken into 
account. The first one is the set of common classes, which are the classes that exist in both classification results 
from optical and SAR data. In order to fuse them, the consensus rule based on logarithmic opinion pool (LOGP) 
[80], which gives weights differently according to the classes, was used. This is to consider the difference in the 
sets of classes the optical and SAR sensors can classify confidently, i.e., the optical sensor is generally useful in 
discriminating all considered land cover classes while urban areas and water bodies are especially distinguishable 
using the SAR data. The second and third subsets of classes belong to the classes that are exclusively classified 
using only optical data and SAR data, respectively, which are used as they are, and combined in a unique decision 
rule as described in [80]. 
In order to consider the spatial context in terms of the interactions between a class and the classes of the 
neighboring pixels, a Markov Random Field (MRF) model [81] was applied after the pixel-wise decision fusion 
step. An MRF is determined by an energy function of which the minimization with respect to the labels is 
equivalent to the estimation by a maximum a-posteriori criterion [81]. Specifically, in Phase 1, an MRF model 
with only up to pairwise clique potentials was used. Hence, the energy function can be written as: 
 

𝑈(𝐋|𝐗) = −∑ 𝛼 log 𝑃𝐹(ℓ𝑠|𝒙𝑠)

𝑠∈𝑆

− ∑ 𝑉(ℓ𝑠, ℓ𝑟)
𝑠∈𝑆
𝑟∈𝜕𝑠

, 

where 𝑆 is the pixel lattice and 𝑠 is a shorthand notation for a generic pixel location (𝑖, 𝑘), i.e., 𝒙𝑠 is short for 
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𝒙(𝑖, 𝑗) with 𝑠 = (𝑖, 𝑘) ∈ 𝑆 (and similarly ℓ𝑠 is short for ℓ(𝑖, 𝑘)). Here, the feature vector 𝒙𝑠 collects the input 
optical and SAR data, and the time argument 𝑡 is dropped because the multi-sensor and spatial fusion stage 

operate on single-time imagery. 𝛼 is a positive weight. The MRF considers ℓ𝑠 as sample of the random field 

{ℓ𝑠}𝑠∈𝑆 of class labels, whose values are discrete. 𝐋 and 𝐗 indicate the output label map to be generated and the 
input image data. 𝜕𝑠 ⊂ 𝑆 is the set of neighboring pixels which can be in the form of four connected adjacent 
pixels (first order connectivity) or the surrounding eight pixels (second order connectivity). The first term of the 
energy function characterizes the likelihood of the class at the pixel level, which depends on the estimated fused 
posterior probability 𝑃𝐹(ℓ𝑠|𝒙𝑠). In the second term, 𝑉(ℓ𝑠, ℓ𝑟) controls the label regularization which was defined 
as: 
 

𝑉(ℓ𝑠, ℓ𝑟) = 𝛾[1 − 𝛿(ℓ𝑠, ℓ𝑟)], 
 

where 𝛿(⋅) is the Kronecker delta function, and 𝛾 is a weight. This term encourages two neighboring pixels to be 
labelled with the same class.  
In the Phase 2 development, the focus is on extending this spatial model in order to reduce and mitigate the 
residual artifacts that were observed in the validation of the Phase 1 product. The rationale is twofold: first, these 
artifacts are generally class-dependent; second, the spatial modeling always needs to be tuned through a 
compromise between regularization and detail preservation. 
In this context, considering that there are some classes needed to be regularized stronger while other classes 
need to be kept as they are or to be smoothened out less for detail preservation, in Phase 2, the weight is being 

parameterized according to the pair of class labels, through a function  𝛾(ℓ𝑠, ℓ𝑟) whose values are defined 
empirically. Hence, the first extension of the second term of the energy function now can be written as: 
 

𝑉𝑠𝑟(ℓ𝑠, ℓ𝑟) = 𝛾(ℓ𝑠, ℓ𝑟) [1 − 𝛿(ℓ𝑠, ℓ𝑟)]. 
 
Furthermore, the extension for Phase 2 also includes the posteriors in the spatial-contextual energy term, i.e., 

the pairwise potential is also being conditioned on the feature vectors 𝒙𝑠. For this, instead of the MRF approach 

that was adopted in Phase 1, the spatial model of Phase 2 is framed within the more general family of 
probabilistic graphical models called Conditional Random Fields (CRFs). Switching from MRF to CRF modelling 
allows significantly extending the flexibility of the local spatial model, while retaining a similar computational 
burden for the inference process. Specifically, the CRF model of Phase 2 makes use of up to pairwise non-zero 
potentials and can be defined as: 
 

𝑈(𝐋|𝐗) = −∑ 𝛼 log 𝑃𝐹(ℓ𝑠|𝒙𝑠)

𝑠∈𝑆

− ∑ 𝑉𝑠𝑟(ℓ𝑠, ℓ𝑟|𝐗)
𝑠∈𝑆
𝑟∈𝜕𝑠

, 

 
where the pairwise potential also incorporates input image data. An effective choice for this potential is 
generally: 
 

𝑉𝑠𝑟(ℓ𝑠 , ℓ𝑟|𝐗) = 𝛾(ℓ𝑠, ℓ𝑟)[1 − 𝛿(ℓ𝑠, ℓ𝑟)]𝐾(𝒙𝑠,𝒙𝑟), 
 
where 𝐾(𝒙𝑠, 𝒙𝑟) is a kernel function that expresses a similarity measure associated with the feature vectors of 
neighboring pixels. The typical choice is the contrast-sensitive CRF Potts’ model, which corresponds to this 
Gaussian choice of the kernel (radial basis function): 

𝒦(𝒙𝑠,𝒙𝑟) = 𝑒
−𝜑‖𝒙𝑠−𝒙𝑟‖

2
, 

where 𝜑 is a positive parameter. On one hand, the contrast-sensitive Potts is known to be effective at locally 
tuning spatial regularization as a function of the input imagery. On the other hand, it makes use of the feature 
vectors extracted from the input imagery directly. 
In order to be aligned with the CCI+ HRLC pipeline, in which the Decision Fusion processing chain only receives 
the posterior probabilities from the optical and SAR processing chain and not the optical and SAR images directly, 
the adopted CRF model is specifically formulated in terms of posteriors instead of feature vectors. The general 
model of the adopted pairwise potential can be written as: 
 

𝑉𝑠𝑟(ℓ𝑠, ℓ𝑟|𝐗) = 𝛾(ℓ𝑠, ℓ𝑟)[1 − 𝛿(ℓ𝑠, ℓ𝑟)]𝒦(𝑷𝑠(𝐗),𝑷𝑟(𝐗)), 
 

where 𝑷𝑠(𝐗) is the vector collecting the fused posterior probabilities 𝑃𝐹(ℓ𝑠 = 𝜔𝑘|𝒙𝑠), of all classes 𝜔𝑘 , 𝑘 =
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1,2, . . , 𝒞, where 𝒞 is the number of classes. Accordingly, the spatial model developed in Phase 2 can be 

summarized as follows: 
 

𝑈(𝐋|𝐗) = −∑ 𝛼 log 𝑃𝐹(ℓ𝑠|𝒙𝑠)

𝑠∈𝑆

− ∑ 𝛾(ℓ𝑠, ℓ𝑟)[1 − 𝛿(ℓ𝑠, ℓ𝑟)]𝒦(𝑷𝑠(𝐗),𝑷𝑟(𝐗))
𝑠∈𝑆
𝑟∈𝜕𝑠

, 

 
We notice that, unlike the MRF model used in Phase 1, which was spatially stationary, this CRF model is spatially 
nonstationary, with the goal of aligning more adaptively with the spatial details in the scene. 

 
We also mention that, with the possibility of using deep learning in Phase 2, there is the opportunity of using a 
deep model to address the pixel-wise posterior fusion while considering spatial information within one unique 
neural model. For this purpose, a Convolution Neural Network (CNN) can be used to fuse the posterior outputs 
coming from optical and SAR processing chains, directly as if they were the outputs of a softmax layer. However, 
while it comes with the benefit of having a possibly very flexible model to do two separate tasks at once, this 
approach also has a drawback, as the CNN needs training whereas the current probabilistic graphical method 
(CRF) does not need one. This implies a large modification in the CCI+ HRLC pipeline because the training set 
should be fed to the Decision Fusion processing chain as well. More generally, the adoption of a deep learning 
strategy within the CCI+ HRLC pipeline generally implies a strong reformulation of the whole pipeline itself – not 
only of the Decision Fusion components. In the framework of this overall cost/benefit tradeoff, this possibility to 
use deep learning formulation will be taken into consideration in view of the second production. 
 

9.2 Multi-temporal fusion 
As land cover mapping is addressed in multiple years, doing the classification and fusion in each time step 
independently from one another inevitably produces noisy results along the time axis. This is especially relevant 
in the case of historical maps because of the variability in the availability of the data, which causes temporal 
inconsistency in the classification. In order to prevent this drawback, multi-temporal fusion has been introduced 
to the Decision Fusion processing chain, allowing the information from other time steps to be taken into account 
in one particular time step. In Phase 1, a simple cascade model [82] was used to perform the multi-temporal 
fusion by using the static map of 2019 as a reference and by propagating the information to the other historical 
products backward. On one hand, this choice allowed greatly reducing false land-cover transitions, as compared 
to separate independent classifications at the various times. On the other hand, the cascade multi-temporal 
fusion model is limited in its use of the temporal information because it only considers one pair of time steps, 
while there exists other useful information in the other time steps of the time series. In Phase 2, to favor the 
temporal consistency, we use the information of the whole time series of the posteriors computed for all the 
years in which land cover is being mapped. For this purpose, the adopted approach is based on the theory of 
Hidden Markov Models (HMMs). 
Given the set of fused posterior probabilities coming from the classification of optical data and SAR data at every 
time step in the considered time series, let us consider, on each pixel, the joint distribution 𝑃𝐹(𝓵|𝒙) =
𝑃𝐹(ℓ1, ℓ2, … , ℓ𝑇|𝒙1, 𝒙2, … , 𝒙𝑇) of the vector of all labels 𝓵 = (ℓ1,ℓ2, … , ℓ𝑇), given the vector of all feature vectors 

𝒙 = (𝒙1, 𝒙2, … , 𝒙𝑇). Here, we focus on a single individual pixel, dropping for the sake of clarity the explicit 
indication of its location (𝑖, 𝑘). A first-order HMM is defined by these two conditions: 
 

𝑃(ℓ𝑡|ℓ𝑡−1, ℓ𝑡−2, … , ℓ1) = 𝑃(ℓ𝑡|ℓ𝑡−1)          ∀𝑡 ∈ {2,3, … , 𝑇} 

𝑃(𝒙|𝓵) =∏𝑃(𝒙𝑡|𝓵𝑡)

𝑡

 

 
which formalize a Markovianity condition along time on the labels and a conditional-independence assumption 
on the relationship between observations and labels, respectively. Under this model, we can prove that the 
global posterior can be written as: 
 

𝑃(𝓵|𝒙)  ∝∏
𝑃𝐹(ℓ𝑡|𝒙𝑡)

𝑃(ℓ𝑡)
𝑡

𝑃(ℓ𝑡|ℓ𝑡−1)𝑃(ℓ1), 

 
where 𝑃(ℓ𝑡) and 𝑃(ℓ1) are priors and 𝑃(ℓ𝑡|ℓ𝑡−1) is the transition probability stating the probability of one class 
changing to another class across time. This formulation supports a maximum a-posteriori (MAP) inference 
directly. Similarly, the marginal posterior mode (MPM) inference of 𝑃(ℓ𝑡|𝒙) can be done sequentially using the 
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forward-backward algorithm [83]. This formulation involves defining a forward procedure that evaluates the joint 
probability of observing all feature vectors up to time 𝑡 and the label at time 𝑡: 
 

𝛼(ℓ𝑡) ≡ 𝑃(𝒙1, … , 𝒙𝑡 , ℓ𝑡), 
 
and a backward step that determines the conditional probability of all observations from time 𝑡 + 1 up to 𝑇 given 
the value of ℓ𝑡: 

𝛽(ℓ𝑡) ≡ 𝑃(𝒙𝑡+1, … , 𝒙𝑇|ℓ𝑡). 
 
𝑃(ℓ𝑡|𝒙), then, can be computed by: 
 

𝑃(ℓ𝑡|𝒙) =
𝛼(ℓ𝑡)𝛽(ℓ𝑡)

∑ 𝛼(ℓ𝑡)𝛽(ℓ𝑡)ℓ𝑡

. 

 
The rationale is that inferring this in sequential order makes the algorithm computationally efficient while making 
use of the information from the full time series. This is the methodological formulation adopted in Phase 2. 
In principle, the HMM theory would also allow to estimate automatically the matrix of the transition probability 
values through a case-specific formulation of the expectation-maximization (EM) algorithm. However, this option 
is not being considered, at least for the first production, within the CCI+ HRLC processing chain, in which 
application-guided parameter setting is preferable in order to align the product with the desiderata of the climate 
community. 
As in the case of spatial multi-sensor fusion, multitemporal fusion can be addressed in terms of deep learning as 
well, with special focus on the family of Recurrent Neural Networks (RNNs) [84]. Several types of RNN such as 
the Long Short-term Memory (LSTM) and the Gated Recurrent Unit (GRU) networks [85], [86], are known from 
the literature to favor a good performance in terms of accuracy. However, as already mentioned in the previous 
section, this deep learning alternative comes with requirements of training data and generally higher cost in 
terms of processing time and computational load. Analogously, within this cost/benefit balance, the opportunity 
to use deep learning will be taken into account for the second production. 

9.3 Spatial harmonization 
The spatial harmonization module is in charge of favoring the spatial consistency across the boundary between 
adjacent mapping tiles during the process of mosaicking them together to generate the final land cover map. The 
main challenge of this is the presence of residual edge artifacts due, in the Phase-1 product, to the different 
properties of the data on the two tiles, which, in turn, is generally caused by the different data availabilities. In 
Phase 1, a linear opinion pool approach was applied across the overlapping areas of two neighboring granules.  
The extension in Phase 2 incorporates class information into the spatial gradient from one granule to the other 
to favor a more seamless spatial fusion. This means that, during the spatial harmonization, the gradient across 
the two granules in the overlapping area is parameterized as a function of not only the spatial location but also 
the class labels. Operatively, this gradient is determined by space-varying weights, whose values are defined now 
by biasing on the labels. 
The rationale is that the aforementioned residual artifacts were noticed to be class-dependent. Therefore, the 
class memberships estimated by the multi-sensor, spatial, and temporal fusion modules are used to partially 
guide the harmonization in a class-oriented (hence application-specific) manner. 

10 Multitemporal change detection and trend analysis 

The use of the High Resolution (HR) Satellite Image Time Series (SITS) in the Change Detection (CD) context 

defines challenges for processing the great amount of data and developing advanced CD methods for handling 

the optical data from 1990-2024 in the time dimension. In particular, challenges will be addressed for dealing 

with long SITS where T ≫2 images. For the long time scale case (i.e., several years) with high temporal resolution, 

CD can be defined in several ways. Among them, we consider the possibility to analyze SITS to detect the changes 

that have happened between consecutive years. Methods developed for the CCI Medium Resolution Land Cover 

(MRLC) accounting for detecting change points of abrupt LC changes at annual scale. They mostly rely on medium 

resolution (300m to 500m) SITS and mainly compare vegetation indices [87]. However, the usage of those 

strategies does not fit the case of multiple class trends. There is a need to define new methods to analyze dense 

HR SITS using a multi-feature framework and to detect differences between the consecutive years. In this 
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context, several factors have been considered in the development of a method: i) it should extract relevant 

information from the multi-annual SITS to properly model the behavior of various LCs, ii) it should take into 

account the irregularity of SITS that is caused mostly by atmospheric conditions, iii) it should exploit a strategy 

that can effectively calculate the differences of feature time series on a yearly basis and, iv) it needs an effective 

and automatic change detector to locate the changes in space and time. 

LC Changes can be divided into three classes [88]: (1) seasonal changes, impacting plant phenology or 

proportional cover of LC types with different plant phenology; (2) gradual changes such as inter-annual climate 

variability (e.g., trends in mean Normalized Difference Vegetation Index (NDVI)) or gradual change inland 

management or land degradation; and (3) abrupt (or permanent) changes, caused by disturbances such as 

deforestation, urbanization, floods, and fires. 

The CCI HRLC change products will be developed with an emphasis on quantification of abrupt/permanent 

changes since climate change tends to be more abrupt than gradual [89]. The analysis is performed over the 

products derived from the multitemporal optical merging step, plus the HRLC static and five years regional maps. 

The general block scheme shown in Figure 33 is used for the generation of HRLC change products. This chapter 

is organized around two main focuses of CCI HRLC phase 2: 

• The first focus involves reprocessing the products from phase one to refine the produced maps. 

• The second focus extends production to new areas and clusters of Sentinel-2 tiles, representing each 

area of interest using a multi-annual, multi-feature land cover change detection approach. 

 

 

Figure 33. Block-based representation of the processing chain for the multitemporal change detection and trend analysis. 

10.1 Reprocessing Phase 1 Historical LC Change Detection and Trend Analysis 

For the historical analysis, the products generated in this phase of the project will undergo refinement through 

the integration of ancillary data and multiple inputs derived from the Phase 1 production, as shown in the Figure 

34. This workflow ensures consistency and homogeneity throughout the processing chain, which is critical for 

accurate detection and mapping of historical changes. 

The historical multi-annual CD starts with registered optical images from Landsat 5-8 that are processed in a 

sequence that involves the identification of changes and the year of interest. The outputs from Phase 1, which 

include LC classifications maps and auxiliary datasets, are used to improve this analysis. Incorporating these 

elements guarantees that the historical maps generated are more reliable and consistent across different 

periods. This approach will also support better tracking of long-term changes by leveraging the temporal depth 

and spatial consistency provided by Phase 1 data, leading to more accurate historical change detection results. 
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Figure 34. Historical multi-annual change detection and trend analysis 

10.2 Multi-annual Multi-feature Change Detection  

In phase2, new areas are being introduced for analysis and change detection utilize also Sentinel-2 datasets. 

Here, we should take into account that the CD processing chain works in pixel level in a yearly basis from 1990 

to 2024 considering three subcontinental area in Amazonia, Africa and Siberia [AD3], so the methodologies will 

be updated considering the higher spatial resolution of Sentinel-2 data, the need to harmonize multi-sensor data 

across these regions, and the inclusion of advanced techniques for managing temporal and spatial variability in 

land cover dynamics. 

The goal is to apply the same preprocessing stages developed in optical preprocessing, with greater emphasis on 

creating an integrated and unified preprocessing workflow for both land cover classification and land cover 

change detection. This will streamline the optical data analysis process, reduce the number of processing steps, 

and ensure a homogeneous and robust preprocessing pipeline. 

Let 𝑆𝐼𝑇𝑆 = {𝑌1, 𝑌2, … 𝑌𝑚 , … , 𝑌𝑀} be a pre-processed satellite image time series that includes 𝑀 years of images 

acquired over the same geographical area. 𝑌𝑚 = {𝑋1, 𝑋2, … , 𝑋𝑛, … , 𝑋𝑇} is a year in the SITS composed of several 

satellite images. Let us assume that 𝑌𝑚  has non-uniform time sampling and each image has a total number of 𝑃 

pixels. Given an image 𝑋𝑡 ∈ 𝑆𝐼𝑇𝑆, each pixel value represents the surface reflectance in a given spatial position 

𝑝 ∈ [1, 𝑃] and a temporal instant 𝑡 ∈ [1, 𝑇]. Let { 𝑏1, 𝑏2, … , 𝑏𝐵} be the set of bands that compose the images 

and 𝐾 the total number of bands. In phase 2, instead of using the original time series data, we utilize composite 

data that can better model LC behavior through time generated in optical preprocessing module (Figure 1). This 

enhances the ability of the breakpoint detector methodology to identify change dates and probabilities more 

effectively with less computations. In this stage, considering the LC maps produced every five years, there are 

years when LC classification is not conducted; in such cases, the composite generation will be implemented for 

LC change detection. 

The input of the processing chain is the pre-processed composites that is employed in the feature selection 

module to distinguish the spectral trends of different sets of LC changes (in details Figure 35).It is possible to 

generate the Post Classification Comparison (PCC) maps using LC classification map every five years. These maps 

have been produced in order to: 1) align the changes that have occurred during five years derived from the LC 

maps to the changes detected in multitemporal change detection processing chain, and 2) reduce the 

computational burden. The PCC maps effectively filter out unchanged pixels over the five-year period by 

comparing LC maps from two different years on a pixel-by-pixel basis. Only the pixels where a change in LC class 

is detected are marked for further processing, allowing the less computational effort in the multitemporal change 

detection chain. Cloud/shadow mask is imposed to remove cloudy pixels. 

After feature selection, for different sensors or the years with high or less frequent acquisitions the time series 

reconstruction module will be considered or not: 

• For Sentinel-2 years with frequent weekly acquisitions and adequate data, composites are generated to 

represent the LC behavior without the need for full time series reconstruction. This approach saves 

processing time and computational resources. 
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• For Landsat years with less frequent acquisitions, the strategy will shift toward using monthly, bi-

monthly, or seasonal composites generated during the pre-processing phase (as outlined in the optical 

pre-processing block in Figure 1). These composites, instead of the original time series data, are used to 

properly model LC behavior over time. 

• In the case of critical Landsat or Sentinel-2 years where there are data gaps, we reconstruct the time 

series to ensure a reliable representation of the LC dynamics. 

The time series reconstruction generates a continuous and dense feature time series by using a LC map to select 

a suitable model for different LCs. This ensures reliable CD analysis despite limited data availability. The abrupt 

change detection is performed considering the proposed Multi-Feature Hyper-temporal Change Vector Analysis 

(MHCVA) [90] technique that analyzes the differences between the features extracted from two consecutive 

yearly feature spaces. In phase two, instead of using the original time series data, we utilize composite data that 

can better model LC behavior through time generated in optical preprocessing module (see Figure 1). This 

enhances the ability of the breakpoint detector methodology to identify change dates and probabilities more 

effectively.  

 

 

Figure 35. Multi-annual Multi-feature LC change detection. 

10.2.1 Feature Selection 

The feature space design will focus on developing region-specific feature spaces customized to the unique 

characteristics of each area by using methods to optimize change detection analysis [91], [92]. For example, the 

feature space incorporates spatial, temporal, and fine-grained features that capture the detailed information of 

the LCs and their changes over time in each region. Pretrained deep learning models are evaluated for extracting 

complex spatial and temporal features, leveraging their capacity to learn intricate patterns from large datasets 

[93]. 

The first stage is to determine the suitable features which are the most important factor in distinguishing the 

spectral trends of various sets of LC changes. Different couples of the available sensor bands are considered to 

compute a set of Normalized Difference Indices (𝑁𝐷𝐼𝑓
𝑆𝐼𝑇𝑆, 𝑓 = 1,… , 𝐹) of different bands as follows: 

 
𝑁𝐷𝐼𝑓

𝑆𝐼𝑇𝑆 =
𝑏𝑢 − 𝑏𝑣
𝑏𝑢 + 𝑏𝑣

, 𝑓 = 1,… , 𝐹  

This stage transforms the K-dimensional feature space into a F-dimensional feature space, where 𝑏𝑢 and 𝑏𝑣 

belong to 𝐵 (the set of bands available in a sensor) and 𝑢 and 𝑣 𝜖 [1,2, … , 𝐵]. These different ratios between 

different spectral bands (e.g., SWIR/NIR, Red/Green) can highlight different changes in land cover types like 

forests, water, or urban areas, as follows: 

• Normalized Difference Vegetation Index (NDVI) is widely used to assess vegetation health and density 

by leveraging the high reflectance of healthy vegetation in the Near-Infrared (NIR) band and the low 

reflectance in the Red band. It helps identify changes in vegetation cover over time, such as 

deforestation, agricultural stress, or regrowth following disturbances [94].  

• Normalized Difference Water Index (NDWI) is designed to detect and monitor changes in water bodies 
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by capitalizing on the high absorption of NIR radiation by water and its high reflectance in the Green 

band.  This index helps in mapping lakes, rivers, wetlands, and coastal zones and can track seasonal 

fluctuations in water bodies or detect long-term water changes due to drought or urbanization [95]. 

• Normalized Burn Ratio (NBR) is used for identifying burned areas and assessing wildfire severity by 

analyzing the changes in NIR and Shortwave Infrared (SWIR) reflectance. Burned areas exhibit lower NIR 

and higher SWIR reflectance compared to healthy vegetation, making this index effective in mapping 

fire-affected regions [96]. An enhanced version of NBR is developed that takes into account the 

reflectance of water, which is called NBR+ [97]. 

• Soil-Adjusted Vegetation Index (SAVI) modifies the NDVI formula by incorporating a correction factor 

(𝐿) to minimize the influence of soil brightness, making it more suitable for arid regions or areas with 

sparse vegetation. The factor 𝐿 is usually set to 0.5 but can be adjusted depending on soil conditions.  

SAVI provides more accurate vegetation assessments in areas with exposed soil, such as deserts or 

grasslands, where traditional NDVI might not perform well [98]. 

• Normalized Difference Built-up Index (NDBI) is designed to identify urban and built-up areas by analyzing 

the difference in reflectance between the SWIR and NIR bands. Urban areas typically reflect more SWIR 

radiation and less NIR radiation compared to vegetation, making NDBI effective for detecting urban 

expansion and monitoring land use changes [99]. 

• The Non-Homogeneous Feature Difference (NHFD) is an index designed to detect differences between 

various spectral features across multiple bands or between two images taken at different times. It works 

by calculating the absolute differences between corresponding spectral bands (or other relevant 

features) of two images, summing these differences across all the available bands to produce a single 

value that represents the degree of change [100]. 

Each of the provided indices offers valuable information about land cover, aiding in the analysis of changes. 

However, depending on the specific area of study, certain indices may be more effective than others. Therefore, 

a thorough analysis of the region is conducted to determine the most relevant indices or a combination of them, 

ensuring a more reliable change detection process. In this context, temporal features can also be highly useful 

for capturing how spectral information evolves over time, allowing for the identification of abrupt changes in 

land cover. Time series analysis of indices like NDVI, NDWI, and NBR provides insights into patterns such as 

deforestation, regrowth, and seasonal fluctuations in vegetation or water bodies. Phenological metrics, including 

the start and end of growing seasons or peak biomass, help monitor vegetation dynamics, while seasonal 

variability analysis distinguishes natural cycles from human disturbances. Multi-year averages of indices offer a 

stable view of persistent changes over years, reducing noise and revealing long-term trends like continuous 

deforestation or urban growth. 

Methods like Principal Component Analysis (PCA), Scale-Invariant Feature Transform (SIFT), and Local Directional 

Pattern (LDP) are highly beneficial in different change detection scenarios due to their ability to extract detailed 

spatial features and patterns from imagery. For instance, PCA is widely used for dimensionality reduction and 

can highlight the most significant variance in data, making it useful for detecting subtle changes in land cover 

over time. SIFT is effective for identifying key points and matching features between images, which is particularly 

valuable for tracking structural or morphological changes in urban areas. LDP captures local texture variations, 

making it useful for detecting fine-scale changes in land surfaces, such as soil degradation or vegetation shifts 

[101]. 

Convolutional Neural Networks (CNNs) [102], for instance, can automatically learn hierarchical features from raw 

image data, capturing both low-level details like edges and textures as well as high-level abstractions such as 

shapes and objects. This is particularly useful for complex change detection scenarios, such as urban expansion 

or deforestation, where both fine-grained and large-scale changes need to be monitored. 

Autoencoders and pre-trained deep networks (e.g., ResNet or VGG) are also commonly used for feature 

extraction, especially when large labeled datasets are unavailable. These networks can be fine-tuned for specific 

tasks, allowing the extraction of rich, spatial, and temporal features that are crucial for identifying land cover 

changes. Deep learning techniques have the added advantage of being able to handle diverse input types (e.g., 
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optical and radar data) and can adapt to different regions and landscape characteristics, making them more 

versatile for multi-temporal change detection. 

The overall approach for optical feature extraction, as illustrated in Figure 36, begins with the preprocessing of 

satellite imagery (see Figure 1). The feature extraction involves generating various feature types: normalized 

difference features, temporal features, and deep network features. Normalized difference features allow for the 

assessment of vegetation health or land cover changes by calculating different normalized indices. Temporal 

features leverage the time series aspect of the data, capturing seasonal dynamics and trends over time. Deep 

network features utilize advanced machine learning techniques to extract complex patterns from the data. After 

extracting these features, the next steps involve feature selection to identify the most relevant variables, 

followed by accuracy assessment to evaluate the performance of the feature extraction process. Ultimately, this 

comprehensive approach culminates in change detection, enabling the identification and analysis of changes in 

land cover or environmental conditions over the monitored period. 

 

Figure 36. The best feature space selection flowchart. 

10.2.2 Time Series Reconstruction 

Time series reconstruction will be implemented for the years (sensors) characterized by non-equally distributed 

temporal sampling and non-continuous trend, also affected by noisy oscillation not corrected in the pre-

processing step. In this context, continuous refers to time series data that contains samples at regularly spaced 

time intervals without significant gaps or missing values.  

The proposed time series reconstruction considers two different strategies for the vegetation and non-

vegetation samples. To produce reliable and continuous time series for the non-vegetation profiles the strategy 

is based on two steps: i) for each pixel in the image extract the NDI-SITS, ii) perform NDI data-SITS augmentation 

by upper envelope and dropout strategy (a piecewise cubic interpolation is used here) [103]. 

Further details on the augmentation by upper envelope strategy are illustrated as follows: 

• Define a NDI-SITS set (𝑁𝐷𝐼𝑡𝑟), corresponding to a year (365 days), plus the two previous and two 

later months of data; 
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• For each 𝑁𝐷𝐼𝑡𝑟, select the samples that are above a given threshold (defined by trial and error as 

NDI = 0.4). This threshold identifies when a given 𝑆𝐼𝑇𝑆𝑝 experiences a significant variability over 

time; 

• Calculate the local maxima (as the points with zero first derivative and negative second derivative) 

of the selected samples and withdraw the remaining ones (from 𝑁𝐷𝐼𝑡𝑟). This leads to the upper 

envelope of the data; 

• Use the samples below the threshold and the local maxima from previous step for data imputation 

by means of a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP). The selection of PCHIP 

over other interpolation methods is justified by its characteristic to preserve the shape of the data 

and respect monotonicity. The combination of these samples is defined as the upper-envelope set; 

• Subtract the imputed data from 𝑁𝐷𝐼𝑡𝑟. Reinsert the withdrawn samples with a difference greater 

than zero to the upper-envelope set. This step allows to better follow the shape of the original data; 

• Impute the updated upper-envelope set by means of PCHIP; 

• Remove the two previous and two later months from 𝑁𝐷𝐼𝑡𝑟 . 

• The definition of 𝑁𝐷𝐼𝑡𝑟 allows to better model the beginning and the end of the SITS, thus 

smoothing discontinuities and possible errors in LCCD analysis. 

In the case of complex land cover classes like vegetation type (i.e., grass, shrubs, forest and crops) that show 

strong variabilities over space and time due to intrinsic seasonality and the large amount of species around the 

world, a third step is added that performs adaptive non-parametric regression of NDI-SITS by considering a 

General Regression Neural Network (GRNN) by taking inspiration from [104] [105](see Figure 37). The non-

parametric regression is used and adapted to produce continuous and regularly sampled temporal signatures for 

vegetation pixels. To do so, four steps are followed: (1) Computation of Normalized Difference Indices (NDI), (2) 

uniform sampling interpolation, (3) low pass filtering and; (4) non-parametric regression through a Multi-Layer 

Perceptron Neural Network (MLP-NN). First, the spectral temporal signatures are combined, generating NDI 

arrays (FS). The combination of the source signals in the 𝐾 bands produce an increased number of features. The 

NDI temporal signatures are then interpolated, considering the density and the shape maintenance requirement. 

A low pass filter reduces the intensity of high-frequency oscillations not usual in the LC temporal signatures, 

achieving a smoother behaviour. Last, a non-parametric regression captures the temporal signatures trend 

reducing the profile complexity and arithmetic dependency. 

 

Figure 37. Time series reconstruction step. 

10.2.3 Abrupt Change Detection 

The proposed CD method for multi-annual SITS detects and characterizes changes occurring between 

consecutive years. Abrupt change detection incorporate a feature fusion strategy based on the MHCVA [90]. 

Assuming 𝑁𝐷𝐼𝑓
𝑆𝐼𝑇𝑆  being the feature time series for each feature 𝑓 and  𝑓 = 1,… , 𝐹𝑅, MHCVA finds the 

differences between every couple of consecutive years in the 𝑁𝐷𝐼𝑓
𝑆𝐼𝑇𝑆by applying a difference feature magnitude 

calculation. First, the regular 𝑁𝐷𝐼𝑓
𝑆𝐼𝑇𝑆  is divided into the records acquired in the same years 𝑁𝐷𝐼𝑓

𝑆𝐼𝑇𝑆 =

{𝑁𝐷𝐼𝑓
𝑌1 , … , 𝑁𝐷𝐼𝑓

𝑌𝑚 … ,𝑁𝐷𝐼𝑓
𝑌𝑀}. Each 𝑁𝐷𝐼𝑓

𝑌𝑚 , 𝑓 = 1,… , 𝐹𝑅 is a regularly sampled feature time series. Then, a 

MHCV is computed between the consecutive years in 𝑁𝐷𝐼𝑓
𝑆𝐼𝑇𝑆 to highlight the temporal differences in the time 

series. If for a given period data are not available for two neighboring years at the pixel level, the algorithm 

considers the next year to calculate the MHCV.  
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Let 𝑁𝐷𝐼𝑓
𝑌𝑚  and 𝑁𝐷𝐼𝑓

𝑌𝑚+1  , 𝑓 = 1,… , 𝐹𝑅 be the sets of smooth NDIs of feature 𝑓 for the years 𝑌𝑚  and 𝑌𝑚+1 within 

a SITS. Both sets have the same length according to the time series reconstruction technique (for a daily and 

weekly reconstruction it is equal to 365 and 52, respectively). A MHCV between 𝑌𝑚  and 𝑌𝑚+1 is performed by 

subtracting 𝑁𝐷𝐼𝑓
𝑌𝑚  and 𝑁𝐷𝐼𝑓

𝑌𝑚+1 for each 𝑓 = 1,… , 𝐹𝑅 as 𝑁𝐷𝐼𝑌𝑚,𝑌𝑚+1 = {𝑁𝐷𝐼1
𝑌𝑚,𝑌𝑚+1 , … , 𝑁𝐷𝐼𝑓

𝑌𝑚,𝑌𝑚+1  }. Then, 

the magnitude of  𝑁𝐷𝐼𝑌𝑚 ,𝑌𝑚+1 is calculated as follows: 

 

|𝑁𝐷𝐼𝑌𝑚,𝑌𝑚+1| =  √∑ 𝑁𝐷𝐼𝑓
𝑌𝑚 ,𝑌𝑚+1

2

𝑓=𝐹𝑅

𝑓=1

  

The resulting magnitude of MHCV represents the variability between the pairs of neighboring years and fuses 

the selected features to benefit from all the features information. Moreover, it makes the processing time 

computationally efficient for dealing with a large multi-annual multi-feature dataset. The output is a time series 

𝑁𝐷𝐼𝑆𝐼𝑇𝑆 = {𝑁𝐷𝐼𝑌1,𝑌2 , … , 𝑁𝐷𝐼𝑌𝑚,𝑌𝑚+1 , … , 𝑁𝐷𝐼𝑌𝑀−1,𝑌𝑀} and it is used as input for the break point detector that 

detects multiple abrupt changes in the trend component of the 𝑁𝐷𝐼𝑆𝐼𝑇𝑆. 

In phase2, other break point detectors such as Bayesian Estimator of Abrupt change, Seasonality & Trend (BEAST) 

[106] will be considered. BEAST employs a Bayesian framework to detect abrupt changes in the trend, 

seasonality, and noise components of a time series, providing probabilistic estimates of breakpoints and 

quantifying uncertainty. It is highly flexible, capable of modeling complex changes such as gradual shifts, sudden 

jumps, or variations in seasonality, making it well-suited for noisy, irregular time series where uncertainty 

quantification is important. However, this flexibility comes at the cost of increased computational demand due 

to its reliance on Bayesian inference techniques like Markov Chain Monte Carlo (MCMC). While BEAST is ideal 

for complex, noisy datasets requiring detailed uncertainty assessment, BFAST excels in applications with well-

defined, periodic seasonal patterns and is widely used in land cover change detection where seasonal cycles are 

predictable. Since BEAST is implemented in R, a Python implementation is being considered to evaluate the 

computational extensiveness of the method; by conducting the following experiments using this breakpoint 

detector, it will be possible to assess the reliability of the analysis. Another version of the BEAST is the Bayesian 

Online Change Point Detection (BOCPD) method [107], known for its speed and efficiency, will be considered as 

alternatives to BFAST and BEAST. 
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